![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > spcegv | GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
spcgv.1 | ⊢ (x = A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
spcegv | ⊢ (A ∈ 𝑉 → (ψ → ∃xφ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2175 | . 2 ⊢ ℲxA | |
2 | nfv 1418 | . 2 ⊢ Ⅎxψ | |
3 | spcgv.1 | . 2 ⊢ (x = A → (φ ↔ ψ)) | |
4 | 1, 2, 3 | spcegf 2630 | 1 ⊢ (A ∈ 𝑉 → (ψ → ∃xφ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 = wceq 1242 ∃wex 1378 ∈ wcel 1390 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-tru 1245 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-v 2553 |
This theorem is referenced by: spcev 2641 eqeu 2705 absneu 3433 elunii 3576 axpweq 3915 euotd 3982 brcogw 4447 opeldmg 4483 breldmg 4484 dmsnopg 4735 dff3im 5255 elunirn 5348 unielxp 5742 op1steq 5747 tfr0 5878 tfrlemibxssdm 5882 tfrlemiex 5886 ertr 6057 f1oen3g 6170 f1dom2g 6172 f1domg 6174 dom3d 6190 en1 6215 recexnq 6374 ltexprlemrl 6584 ltexprlemru 6586 recexprlemm 6596 recexprlemloc 6603 recexprlem1ssl 6605 recexprlem1ssu 6606 frecuzrdgfn 8879 bj-2inf 9397 |
Copyright terms: Public domain | W3C validator |