Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcgv GIF version

Theorem spcgv 2640
 Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.)
Hypothesis
Ref Expression
spcgv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
spcgv (𝐴𝑉 → (∀𝑥𝜑𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem spcgv
StepHypRef Expression
1 nfcv 2178 . 2 𝑥𝐴
2 nfv 1421 . 2 𝑥𝜓
3 spcgv.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
41, 2, 3spcgf 2635 1 (𝐴𝑉 → (∀𝑥𝜑𝜓))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98  ∀wal 1241   = wceq 1243   ∈ wcel 1393 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559 This theorem is referenced by:  spcv  2646  mob2  2721  intss1  3630  dfiin2g  3690  frirrg  4087  frind  4089  alxfr  4193  elirr  4266  en2lp  4278  tfisi  4310  mptfvex  5256  rdgisucinc  5972  frecabex  5984
 Copyright terms: Public domain W3C validator