ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ertr GIF version

Theorem ertr 6121
Description: An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
Assertion
Ref Expression
ertr (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))

Proof of Theorem ertr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ersymb.1 . . . . . . 7 (𝜑𝑅 Er 𝑋)
2 errel 6115 . . . . . . 7 (𝑅 Er 𝑋 → Rel 𝑅)
31, 2syl 14 . . . . . 6 (𝜑 → Rel 𝑅)
4 simpr 103 . . . . . 6 ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐵𝑅𝐶)
5 brrelex 4382 . . . . . 6 ((Rel 𝑅𝐵𝑅𝐶) → 𝐵 ∈ V)
63, 4, 5syl2an 273 . . . . 5 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐵 ∈ V)
7 simpr 103 . . . . 5 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → (𝐴𝑅𝐵𝐵𝑅𝐶))
8 breq2 3768 . . . . . . 7 (𝑥 = 𝐵 → (𝐴𝑅𝑥𝐴𝑅𝐵))
9 breq1 3767 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝑅𝐶𝐵𝑅𝐶))
108, 9anbi12d 442 . . . . . 6 (𝑥 = 𝐵 → ((𝐴𝑅𝑥𝑥𝑅𝐶) ↔ (𝐴𝑅𝐵𝐵𝑅𝐶)))
1110spcegv 2641 . . . . 5 (𝐵 ∈ V → ((𝐴𝑅𝐵𝐵𝑅𝐶) → ∃𝑥(𝐴𝑅𝑥𝑥𝑅𝐶)))
126, 7, 11sylc 56 . . . 4 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → ∃𝑥(𝐴𝑅𝑥𝑥𝑅𝐶))
13 simpl 102 . . . . . 6 ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐵)
14 brrelex 4382 . . . . . 6 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
153, 13, 14syl2an 273 . . . . 5 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐴 ∈ V)
16 brrelex2 4383 . . . . . 6 ((Rel 𝑅𝐵𝑅𝐶) → 𝐶 ∈ V)
173, 4, 16syl2an 273 . . . . 5 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐶 ∈ V)
18 brcog 4502 . . . . 5 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴(𝑅𝑅)𝐶 ↔ ∃𝑥(𝐴𝑅𝑥𝑥𝑅𝐶)))
1915, 17, 18syl2anc 391 . . . 4 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → (𝐴(𝑅𝑅)𝐶 ↔ ∃𝑥(𝐴𝑅𝑥𝑥𝑅𝐶)))
2012, 19mpbird 156 . . 3 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐴(𝑅𝑅)𝐶)
2120ex 108 . 2 (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴(𝑅𝑅)𝐶))
22 df-er 6106 . . . . . 6 (𝑅 Er 𝑋 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝑋 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
2322simp3bi 921 . . . . 5 (𝑅 Er 𝑋 → (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅)
241, 23syl 14 . . . 4 (𝜑 → (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅)
2524unssbd 3121 . . 3 (𝜑 → (𝑅𝑅) ⊆ 𝑅)
2625ssbrd 3805 . 2 (𝜑 → (𝐴(𝑅𝑅)𝐶𝐴𝑅𝐶))
2721, 26syld 40 1 (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wex 1381  wcel 1393  Vcvv 2557  cun 2915  wss 2917   class class class wbr 3764  ccnv 4344  dom cdm 4345  ccom 4349  Rel wrel 4350   Er wer 6103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-co 4354  df-er 6106
This theorem is referenced by:  ertrd  6122  erth  6150  iinerm  6178  entr  6264
  Copyright terms: Public domain W3C validator