![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ersymb | GIF version |
Description: An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ersymb.1 | ⊢ (φ → 𝑅 Er 𝑋) |
Ref | Expression |
---|---|
ersymb | ⊢ (φ → (A𝑅B ↔ B𝑅A)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ersymb.1 | . . . 4 ⊢ (φ → 𝑅 Er 𝑋) | |
2 | 1 | adantr 261 | . . 3 ⊢ ((φ ∧ A𝑅B) → 𝑅 Er 𝑋) |
3 | simpr 103 | . . 3 ⊢ ((φ ∧ A𝑅B) → A𝑅B) | |
4 | 2, 3 | ersym 6054 | . 2 ⊢ ((φ ∧ A𝑅B) → B𝑅A) |
5 | 1 | adantr 261 | . . 3 ⊢ ((φ ∧ B𝑅A) → 𝑅 Er 𝑋) |
6 | simpr 103 | . . 3 ⊢ ((φ ∧ B𝑅A) → B𝑅A) | |
7 | 5, 6 | ersym 6054 | . 2 ⊢ ((φ ∧ B𝑅A) → A𝑅B) |
8 | 4, 7 | impbida 528 | 1 ⊢ (φ → (A𝑅B ↔ B𝑅A)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 class class class wbr 3755 Er wer 6039 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 ax-pow 3918 ax-pr 3935 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-nf 1347 df-sb 1643 df-eu 1900 df-mo 1901 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ral 2305 df-rex 2306 df-v 2553 df-un 2916 df-in 2918 df-ss 2925 df-pw 3353 df-sn 3373 df-pr 3374 df-op 3376 df-br 3756 df-opab 3810 df-xp 4294 df-rel 4295 df-cnv 4296 df-er 6042 |
This theorem is referenced by: ercnv 6063 erth 6086 erth2 6087 iinerm 6114 ensymb 6196 |
Copyright terms: Public domain | W3C validator |