Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  spc2egv Structured version   GIF version

Theorem spc2egv 2636
 Description: Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
Hypothesis
Ref Expression
spc2egv.1 ((x = A y = B) → (φψ))
Assertion
Ref Expression
spc2egv ((A 𝑉 B 𝑊) → (ψxyφ))
Distinct variable groups:   x,y,A   x,B,y   ψ,x,y
Allowed substitution hints:   φ(x,y)   𝑉(x,y)   𝑊(x,y)

Proof of Theorem spc2egv
StepHypRef Expression
1 elisset 2562 . . . 4 (A 𝑉x x = A)
2 elisset 2562 . . . 4 (B 𝑊y y = B)
31, 2anim12i 321 . . 3 ((A 𝑉 B 𝑊) → (x x = A y y = B))
4 eeanv 1804 . . 3 (xy(x = A y = B) ↔ (x x = A y y = B))
53, 4sylibr 137 . 2 ((A 𝑉 B 𝑊) → xy(x = A y = B))
6 spc2egv.1 . . . 4 ((x = A y = B) → (φψ))
76biimprcd 149 . . 3 (ψ → ((x = A y = B) → φ))
872eximdv 1759 . 2 (ψ → (xy(x = A y = B) → xyφ))
95, 8syl5com 26 1 ((A 𝑉 B 𝑊) → (ψxyφ))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98   = wceq 1242  ∃wex 1378   ∈ wcel 1390 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-v 2553 This theorem is referenced by:  spc2ev  2642  th3q  6147  addnnnq0  6432  mulnnnq0  6433  addsrpr  6673  mulsrpr  6674
 Copyright terms: Public domain W3C validator