Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eximdv Structured version   GIF version

Theorem 2eximdv 1759
 Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 3-Aug-1995.)
Hypothesis
Ref Expression
2alimdv.1 (φ → (ψχ))
Assertion
Ref Expression
2eximdv (φ → (xyψxyχ))
Distinct variable groups:   φ,x   φ,y
Allowed substitution hints:   ψ(x,y)   χ(x,y)

Proof of Theorem 2eximdv
StepHypRef Expression
1 2alimdv.1 . . 3 (φ → (ψχ))
21eximdv 1757 . 2 (φ → (yψyχ))
32eximdv 1757 1 (φ → (xyψxyχ))
 Colors of variables: wff set class Syntax hints:   → wi 4  ∃wex 1378 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-17 1416  ax-ial 1424 This theorem depends on definitions:  df-bi 110 This theorem is referenced by:  cgsex2g  2584  cgsex4g  2585  spc2egv  2636  spc3egv  2638  relop  4429  elres  4589  opabbrex  5491  th3q  6147  addnnnq0  6431  mulnnnq0  6432  prmuloc  6546  addsrpr  6653  mulsrpr  6654
 Copyright terms: Public domain W3C validator