ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemru GIF version

Theorem ltexprlemru 6710
Description: Lemma for ltexpri 6711. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemru (𝐴<P 𝐵 → (2nd𝐵) ⊆ (2nd ‘(𝐴 +P 𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem ltexprlemru
Dummy variables 𝑧 𝑤 𝑢 𝑣 𝑓 𝑔 𝑞 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 6603 . . . . . . . 8 <P ⊆ (P × P)
21brel 4392 . . . . . . 7 (𝐴<P 𝐵 → (𝐴P𝐵P))
32simprd 107 . . . . . 6 (𝐴<P 𝐵𝐵P)
4 prop 6573 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
53, 4syl 14 . . . . 5 (𝐴<P 𝐵 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
6 prnminu 6587 . . . . 5 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑤 ∈ (2nd𝐵)) → ∃𝑡 ∈ (2nd𝐵)𝑡 <Q 𝑤)
75, 6sylan 267 . . . 4 ((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) → ∃𝑡 ∈ (2nd𝐵)𝑡 <Q 𝑤)
8 simprr 484 . . . . . 6 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) → 𝑡 <Q 𝑤)
9 elprnqu 6580 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑡 ∈ (2nd𝐵)) → 𝑡Q)
105, 9sylan 267 . . . . . . . 8 ((𝐴<P 𝐵𝑡 ∈ (2nd𝐵)) → 𝑡Q)
1110ad2ant2r 478 . . . . . . 7 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) → 𝑡Q)
12 elprnqu 6580 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑤 ∈ (2nd𝐵)) → 𝑤Q)
135, 12sylan 267 . . . . . . . 8 ((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) → 𝑤Q)
1413adantr 261 . . . . . . 7 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) → 𝑤Q)
15 ltexnqq 6506 . . . . . . 7 ((𝑡Q𝑤Q) → (𝑡 <Q 𝑤 ↔ ∃𝑣Q (𝑡 +Q 𝑣) = 𝑤))
1611, 14, 15syl2anc 391 . . . . . 6 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) → (𝑡 <Q 𝑤 ↔ ∃𝑣Q (𝑡 +Q 𝑣) = 𝑤))
178, 16mpbid 135 . . . . 5 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) → ∃𝑣Q (𝑡 +Q 𝑣) = 𝑤)
182simpld 105 . . . . . . . . . 10 (𝐴<P 𝐵𝐴P)
19 prop 6573 . . . . . . . . . 10 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2018, 19syl 14 . . . . . . . . 9 (𝐴<P 𝐵 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
21 prarloc 6601 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑣Q) → ∃𝑧 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑧 +Q 𝑣))
2220, 21sylan 267 . . . . . . . 8 ((𝐴<P 𝐵𝑣Q) → ∃𝑧 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑧 +Q 𝑣))
2322adantlr 446 . . . . . . 7 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ 𝑣Q) → ∃𝑧 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑧 +Q 𝑣))
2423ad2ant2r 478 . . . . . 6 ((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) → ∃𝑧 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑧 +Q 𝑣))
25 simplll 485 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) → 𝐴<P 𝐵)
2625ad2antrr 457 . . . . . . . . . . . 12 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝐴<P 𝐵)
27 ltdfpr 6604 . . . . . . . . . . . . . 14 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
2827biimpd 132 . . . . . . . . . . . . 13 ((𝐴P𝐵P) → (𝐴<P 𝐵 → ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
292, 28mpcom 32 . . . . . . . . . . . 12 (𝐴<P 𝐵 → ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))
3026, 29syl 14 . . . . . . . . . . 11 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))
3125adantr 261 . . . . . . . . . . . . . 14 (((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → 𝐴<P 𝐵)
3231ad2antrr 457 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝐴<P 𝐵)
33 simplrl 487 . . . . . . . . . . . . . 14 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝑧 ∈ (1st𝐴))
3433adantr 261 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝑧 ∈ (1st𝐴))
35 simprrl 491 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝑞 ∈ (2nd𝐴))
36 prltlu 6585 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)) → 𝑧 <Q 𝑞)
3720, 36syl3an1 1168 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑧 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)) → 𝑧 <Q 𝑞)
3832, 34, 35, 37syl3anc 1135 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝑧 <Q 𝑞)
39 simprrr 492 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝑞 ∈ (1st𝐵))
40 simplrl 487 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) → 𝑡 ∈ (2nd𝐵))
4140adantr 261 . . . . . . . . . . . . . 14 (((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → 𝑡 ∈ (2nd𝐵))
4241ad2antrr 457 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝑡 ∈ (2nd𝐵))
43 prltlu 6585 . . . . . . . . . . . . . 14 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑞 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) → 𝑞 <Q 𝑡)
445, 43syl3an1 1168 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑞 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) → 𝑞 <Q 𝑡)
4532, 39, 42, 44syl3anc 1135 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝑞 <Q 𝑡)
46 ltsonq 6496 . . . . . . . . . . . . 13 <Q Or Q
47 ltrelnq 6463 . . . . . . . . . . . . 13 <Q ⊆ (Q × Q)
4846, 47sotri 4720 . . . . . . . . . . . 12 ((𝑧 <Q 𝑞𝑞 <Q 𝑡) → 𝑧 <Q 𝑡)
4938, 45, 48syl2anc 391 . . . . . . . . . . 11 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑞Q ∧ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵)))) → 𝑧 <Q 𝑡)
5030, 49rexlimddv 2437 . . . . . . . . . 10 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝑧 <Q 𝑡)
51 ltexnqi 6507 . . . . . . . . . 10 (𝑧 <Q 𝑡 → ∃𝑠Q (𝑧 +Q 𝑠) = 𝑡)
5250, 51syl 14 . . . . . . . . 9 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → ∃𝑠Q (𝑧 +Q 𝑠) = 𝑡)
53 simplrr 488 . . . . . . . . . . . 12 (((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → (𝑡 +Q 𝑣) = 𝑤)
5453ad2antrr 457 . . . . . . . . . . 11 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → (𝑡 +Q 𝑣) = 𝑤)
55 simprr 484 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → (𝑧 +Q 𝑠) = 𝑡)
56 oveq1 5519 . . . . . . . . . . . . 13 ((𝑧 +Q 𝑠) = 𝑡 → ((𝑧 +Q 𝑠) +Q 𝑣) = (𝑡 +Q 𝑣))
5756eqeq1d 2048 . . . . . . . . . . . 12 ((𝑧 +Q 𝑠) = 𝑡 → (((𝑧 +Q 𝑠) +Q 𝑣) = 𝑤 ↔ (𝑡 +Q 𝑣) = 𝑤))
5855, 57syl 14 . . . . . . . . . . 11 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → (((𝑧 +Q 𝑠) +Q 𝑣) = 𝑤 ↔ (𝑡 +Q 𝑣) = 𝑤))
5954, 58mpbird 156 . . . . . . . . . 10 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → ((𝑧 +Q 𝑠) +Q 𝑣) = 𝑤)
60 elprnql 6579 . . . . . . . . . . . . . . . . 17 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴)) → 𝑧Q)
6120, 60sylan 267 . . . . . . . . . . . . . . . 16 ((𝐴<P 𝐵𝑧 ∈ (1st𝐴)) → 𝑧Q)
6261adantlr 446 . . . . . . . . . . . . . . 15 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ 𝑧 ∈ (1st𝐴)) → 𝑧Q)
6362ad2ant2r 478 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → 𝑧Q)
6463adantlr 446 . . . . . . . . . . . . 13 (((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → 𝑧Q)
6564ad2antrr 457 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝑧Q)
66 simplrl 487 . . . . . . . . . . . . 13 (((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → 𝑣Q)
6766ad2antrr 457 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝑣Q)
68 simprl 483 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝑠Q)
69 addcomnqg 6479 . . . . . . . . . . . . 13 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
7069adantl 262 . . . . . . . . . . . 12 ((((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
71 addassnqg 6480 . . . . . . . . . . . . 13 ((𝑓Q𝑔QQ) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
7271adantl 262 . . . . . . . . . . . 12 ((((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) ∧ (𝑓Q𝑔QQ)) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
7365, 67, 68, 70, 72caov32d 5681 . . . . . . . . . . 11 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → ((𝑧 +Q 𝑣) +Q 𝑠) = ((𝑧 +Q 𝑠) +Q 𝑣))
74 simpr 103 . . . . . . . . . . . . . 14 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝑢 <Q (𝑧 +Q 𝑣))
75 simplrr 488 . . . . . . . . . . . . . . 15 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝑢 ∈ (2nd𝐴))
76 prcunqu 6583 . . . . . . . . . . . . . . . 16 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑢 ∈ (2nd𝐴)) → (𝑢 <Q (𝑧 +Q 𝑣) → (𝑧 +Q 𝑣) ∈ (2nd𝐴)))
7720, 76sylan 267 . . . . . . . . . . . . . . 15 ((𝐴<P 𝐵𝑢 ∈ (2nd𝐴)) → (𝑢 <Q (𝑧 +Q 𝑣) → (𝑧 +Q 𝑣) ∈ (2nd𝐴)))
7826, 75, 77syl2anc 391 . . . . . . . . . . . . . 14 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → (𝑢 <Q (𝑧 +Q 𝑣) → (𝑧 +Q 𝑣) ∈ (2nd𝐴)))
7974, 78mpd 13 . . . . . . . . . . . . 13 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → (𝑧 +Q 𝑣) ∈ (2nd𝐴))
8079adantr 261 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → (𝑧 +Q 𝑣) ∈ (2nd𝐴))
8133adantr 261 . . . . . . . . . . . . . 14 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝑧 ∈ (1st𝐴))
8241ad2antrr 457 . . . . . . . . . . . . . . 15 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝑡 ∈ (2nd𝐵))
8355, 82eqeltrd 2114 . . . . . . . . . . . . . 14 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → (𝑧 +Q 𝑠) ∈ (2nd𝐵))
84 eleq1 2100 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (𝑦 ∈ (1st𝐴) ↔ 𝑧 ∈ (1st𝐴)))
85 oveq1 5519 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (𝑦 +Q 𝑠) = (𝑧 +Q 𝑠))
8685eleq1d 2106 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → ((𝑦 +Q 𝑠) ∈ (2nd𝐵) ↔ (𝑧 +Q 𝑠) ∈ (2nd𝐵)))
8784, 86anbi12d 442 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → ((𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑠) ∈ (2nd𝐵)) ↔ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑠) ∈ (2nd𝐵))))
8887spcegv 2641 . . . . . . . . . . . . . . 15 (𝑧 ∈ (1st𝐴) → ((𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑠) ∈ (2nd𝐵)) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑠) ∈ (2nd𝐵))))
8988anabsi5 513 . . . . . . . . . . . . . 14 ((𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑠) ∈ (2nd𝐵)) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑠) ∈ (2nd𝐵)))
9081, 83, 89syl2anc 391 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑠) ∈ (2nd𝐵)))
91 ltexprlem.1 . . . . . . . . . . . . . 14 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
9291ltexprlemelu 6697 . . . . . . . . . . . . 13 (𝑠 ∈ (2nd𝐶) ↔ (𝑠Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑠) ∈ (2nd𝐵))))
9368, 90, 92sylanbrc 394 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝑠 ∈ (2nd𝐶))
9431ad2antrr 457 . . . . . . . . . . . . . 14 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝐴<P 𝐵)
9594, 18syl 14 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝐴P)
9691ltexprlempr 6706 . . . . . . . . . . . . . 14 (𝐴<P 𝐵𝐶P)
9794, 96syl 14 . . . . . . . . . . . . 13 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝐶P)
98 df-iplp 6566 . . . . . . . . . . . . . 14 +P = (𝑥P, 𝑤P ↦ ⟨{𝑧Q ∣ ∃𝑓Q𝑣Q (𝑓 ∈ (1st𝑥) ∧ 𝑣 ∈ (1st𝑤) ∧ 𝑧 = (𝑓 +Q 𝑣))}, {𝑧Q ∣ ∃𝑓Q𝑣Q (𝑓 ∈ (2nd𝑥) ∧ 𝑣 ∈ (2nd𝑤) ∧ 𝑧 = (𝑓 +Q 𝑣))}⟩)
99 addclnq 6473 . . . . . . . . . . . . . 14 ((𝑓Q𝑣Q) → (𝑓 +Q 𝑣) ∈ Q)
10098, 99genppreclu 6613 . . . . . . . . . . . . 13 ((𝐴P𝐶P) → (((𝑧 +Q 𝑣) ∈ (2nd𝐴) ∧ 𝑠 ∈ (2nd𝐶)) → ((𝑧 +Q 𝑣) +Q 𝑠) ∈ (2nd ‘(𝐴 +P 𝐶))))
10195, 97, 100syl2anc 391 . . . . . . . . . . . 12 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → (((𝑧 +Q 𝑣) ∈ (2nd𝐴) ∧ 𝑠 ∈ (2nd𝐶)) → ((𝑧 +Q 𝑣) +Q 𝑠) ∈ (2nd ‘(𝐴 +P 𝐶))))
10280, 93, 101mp2and 409 . . . . . . . . . . 11 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → ((𝑧 +Q 𝑣) +Q 𝑠) ∈ (2nd ‘(𝐴 +P 𝐶)))
10373, 102eqeltrrd 2115 . . . . . . . . . 10 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → ((𝑧 +Q 𝑠) +Q 𝑣) ∈ (2nd ‘(𝐴 +P 𝐶)))
10459, 103eqeltrrd 2115 . . . . . . . . 9 (((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) ∧ (𝑠Q ∧ (𝑧 +Q 𝑠) = 𝑡)) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶)))
10552, 104rexlimddv 2437 . . . . . . . 8 ((((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) ∧ 𝑢 <Q (𝑧 +Q 𝑣)) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶)))
106105ex 108 . . . . . . 7 (((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) ∧ (𝑧 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → (𝑢 <Q (𝑧 +Q 𝑣) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶))))
107106rexlimdvva 2440 . . . . . 6 ((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) → (∃𝑧 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑧 +Q 𝑣) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶))))
10824, 107mpd 13 . . . . 5 ((((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) ∧ (𝑣Q ∧ (𝑡 +Q 𝑣) = 𝑤)) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶)))
10917, 108rexlimddv 2437 . . . 4 (((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) ∧ (𝑡 ∈ (2nd𝐵) ∧ 𝑡 <Q 𝑤)) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶)))
1107, 109rexlimddv 2437 . . 3 ((𝐴<P 𝐵𝑤 ∈ (2nd𝐵)) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶)))
111110ex 108 . 2 (𝐴<P 𝐵 → (𝑤 ∈ (2nd𝐵) → 𝑤 ∈ (2nd ‘(𝐴 +P 𝐶))))
112111ssrdv 2951 1 (𝐴<P 𝐵 → (2nd𝐵) ⊆ (2nd ‘(𝐴 +P 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wex 1381  wcel 1393  wrex 2307  {crab 2310  wss 2917  cop 3378   class class class wbr 3764  cfv 4902  (class class class)co 5512  1st c1st 5765  2nd c2nd 5766  Qcnq 6378   +Q cplq 6380   <Q cltq 6383  Pcnp 6389   +P cpp 6391  <P cltp 6393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-iplp 6566  df-iltp 6568
This theorem is referenced by:  ltexpri  6711
  Copyright terms: Public domain W3C validator