![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > brcogw | GIF version |
Description: Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
Ref | Expression |
---|---|
brcogw | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → 𝐴(𝐶 ∘ 𝐷)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 907 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → 𝐴 ∈ 𝑉) | |
2 | simpl2 908 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → 𝐵 ∈ 𝑊) | |
3 | breq2 3768 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐴𝐷𝑥 ↔ 𝐴𝐷𝑋)) | |
4 | breq1 3767 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥𝐶𝐵 ↔ 𝑋𝐶𝐵)) | |
5 | 3, 4 | anbi12d 442 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵) ↔ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵))) |
6 | 5 | spcegv 2641 | . . . 4 ⊢ (𝑋 ∈ 𝑍 → ((𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵) → ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
7 | 6 | imp 115 | . . 3 ⊢ ((𝑋 ∈ 𝑍 ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
8 | 7 | 3ad2antl3 1068 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
9 | brcog 4502 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) | |
10 | 9 | biimpar 281 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) → 𝐴(𝐶 ∘ 𝐷)𝐵) |
11 | 1, 2, 8, 10 | syl21anc 1134 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → 𝐴(𝐶 ∘ 𝐷)𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∧ w3a 885 = wceq 1243 ∃wex 1381 ∈ wcel 1393 class class class wbr 3764 ∘ ccom 4349 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-co 4354 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |