Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  brcogw GIF version

Theorem brcogw 4504
 Description: Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Assertion
Ref Expression
brcogw (((𝐴𝑉𝐵𝑊𝑋𝑍) ∧ (𝐴𝐷𝑋𝑋𝐶𝐵)) → 𝐴(𝐶𝐷)𝐵)

Proof of Theorem brcogw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 907 . 2 (((𝐴𝑉𝐵𝑊𝑋𝑍) ∧ (𝐴𝐷𝑋𝑋𝐶𝐵)) → 𝐴𝑉)
2 simpl2 908 . 2 (((𝐴𝑉𝐵𝑊𝑋𝑍) ∧ (𝐴𝐷𝑋𝑋𝐶𝐵)) → 𝐵𝑊)
3 breq2 3768 . . . . . 6 (𝑥 = 𝑋 → (𝐴𝐷𝑥𝐴𝐷𝑋))
4 breq1 3767 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝐶𝐵𝑋𝐶𝐵))
53, 4anbi12d 442 . . . . 5 (𝑥 = 𝑋 → ((𝐴𝐷𝑥𝑥𝐶𝐵) ↔ (𝐴𝐷𝑋𝑋𝐶𝐵)))
65spcegv 2641 . . . 4 (𝑋𝑍 → ((𝐴𝐷𝑋𝑋𝐶𝐵) → ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
76imp 115 . . 3 ((𝑋𝑍 ∧ (𝐴𝐷𝑋𝑋𝐶𝐵)) → ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
873ad2antl3 1068 . 2 (((𝐴𝑉𝐵𝑊𝑋𝑍) ∧ (𝐴𝐷𝑋𝑋𝐶𝐵)) → ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
9 brcog 4502 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
109biimpar 281 . 2 (((𝐴𝑉𝐵𝑊) ∧ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)) → 𝐴(𝐶𝐷)𝐵)
111, 2, 8, 10syl21anc 1134 1 (((𝐴𝑉𝐵𝑊𝑋𝑍) ∧ (𝐴𝐷𝑋𝑋𝐶𝐵)) → 𝐴(𝐶𝐷)𝐵)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∧ w3a 885   = wceq 1243  ∃wex 1381   ∈ wcel 1393   class class class wbr 3764   ∘ ccom 4349 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-co 4354 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator