ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcegf Unicode version

Theorem spcegf 2636
Description: Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997.)
Hypotheses
Ref Expression
spcgf.1  |-  F/_ x A
spcgf.2  |-  F/ x ps
spcgf.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
spcegf  |-  ( A  e.  V  ->  ( ps  ->  E. x ph )
)

Proof of Theorem spcegf
StepHypRef Expression
1 spcgf.2 . . 3  |-  F/ x ps
2 spcgf.1 . . 3  |-  F/_ x A
31, 2spcegft 2632 . 2  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  V  ->  ( ps  ->  E. x ph ) ) )
4 spcgf.3 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
53, 4mpg 1340 1  |-  ( A  e.  V  ->  ( ps  ->  E. x ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98    = wceq 1243   F/wnf 1349   E.wex 1381    e. wcel 1393   F/_wnfc 2165
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559
This theorem is referenced by:  spcegv  2641  rspce  2651  euotd  3991
  Copyright terms: Public domain W3C validator