ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcimdv Unicode version

Theorem spcimdv 2631
Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimdv.1
spcimdv.2
Assertion
Ref Expression
spcimdv
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem spcimdv
StepHypRef Expression
1 spcimdv.2 . . . 4
21ex 108 . . 3
32alrimiv 1751 . 2
4 spcimdv.1 . 2
5 nfv 1418 . . 3  F/
6 nfcv 2175 . . 3  F/_
75, 6spcimgft 2623 . 2
83, 4, 7sylc 56 1
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97  wal 1240   wceq 1242   wcel 1390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553
This theorem is referenced by:  spcdv  2632  rspcimdv  2651
  Copyright terms: Public domain W3C validator