ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1steq Unicode version

Theorem op1steq 5805
Description: Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
op1steq  |-  ( A  e.  ( V  X.  W )  ->  (
( 1st `  A
)  =  B  <->  E. x  A  =  <. B ,  x >. ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem op1steq
StepHypRef Expression
1 xpss 4446 . . 3  |-  ( V  X.  W )  C_  ( _V  X.  _V )
21sseli 2941 . 2  |-  ( A  e.  ( V  X.  W )  ->  A  e.  ( _V  X.  _V ) )
3 eqid 2040 . . . . . 6  |-  ( 2nd `  A )  =  ( 2nd `  A )
4 eqopi 5798 . . . . . 6  |-  ( ( A  e.  ( _V 
X.  _V )  /\  (
( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  ( 2nd `  A
) ) )  ->  A  =  <. B , 
( 2nd `  A
) >. )
53, 4mpanr2 414 . . . . 5  |-  ( ( A  e.  ( _V 
X.  _V )  /\  ( 1st `  A )  =  B )  ->  A  =  <. B ,  ( 2nd `  A )
>. )
6 2ndexg 5795 . . . . . . 7  |-  ( A  e.  ( _V  X.  _V )  ->  ( 2nd `  A )  e.  _V )
7 opeq2 3550 . . . . . . . . 9  |-  ( x  =  ( 2nd `  A
)  ->  <. B ,  x >.  =  <. B , 
( 2nd `  A
) >. )
87eqeq2d 2051 . . . . . . . 8  |-  ( x  =  ( 2nd `  A
)  ->  ( A  =  <. B ,  x >.  <-> 
A  =  <. B , 
( 2nd `  A
) >. ) )
98spcegv 2641 . . . . . . 7  |-  ( ( 2nd `  A )  e.  _V  ->  ( A  =  <. B , 
( 2nd `  A
) >.  ->  E. x  A  =  <. B ,  x >. ) )
106, 9syl 14 . . . . . 6  |-  ( A  e.  ( _V  X.  _V )  ->  ( A  =  <. B ,  ( 2nd `  A )
>.  ->  E. x  A  = 
<. B ,  x >. ) )
1110adantr 261 . . . . 5  |-  ( ( A  e.  ( _V 
X.  _V )  /\  ( 1st `  A )  =  B )  ->  ( A  =  <. B , 
( 2nd `  A
) >.  ->  E. x  A  =  <. B ,  x >. ) )
125, 11mpd 13 . . . 4  |-  ( ( A  e.  ( _V 
X.  _V )  /\  ( 1st `  A )  =  B )  ->  E. x  A  =  <. B ,  x >. )
1312ex 108 . . 3  |-  ( A  e.  ( _V  X.  _V )  ->  ( ( 1st `  A )  =  B  ->  E. x  A  =  <. B ,  x >. ) )
14 eqop 5803 . . . . 5  |-  ( A  e.  ( _V  X.  _V )  ->  ( A  =  <. B ,  x >.  <-> 
( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  x ) ) )
15 simpl 102 . . . . 5  |-  ( ( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  x )  -> 
( 1st `  A
)  =  B )
1614, 15syl6bi 152 . . . 4  |-  ( A  e.  ( _V  X.  _V )  ->  ( A  =  <. B ,  x >.  ->  ( 1st `  A
)  =  B ) )
1716exlimdv 1700 . . 3  |-  ( A  e.  ( _V  X.  _V )  ->  ( E. x  A  =  <. B ,  x >.  ->  ( 1st `  A )  =  B ) )
1813, 17impbid 120 . 2  |-  ( A  e.  ( _V  X.  _V )  ->  ( ( 1st `  A )  =  B  <->  E. x  A  =  <. B ,  x >. ) )
192, 18syl 14 1  |-  ( A  e.  ( V  X.  W )  ->  (
( 1st `  A
)  =  B  <->  E. x  A  =  <. B ,  x >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393   _Vcvv 2557   <.cop 3378    X. cxp 4343   ` cfv 4902   1stc1st 5765   2ndc2nd 5766
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fo 4908  df-fv 4910  df-1st 5767  df-2nd 5768
This theorem is referenced by:  releldm2  5811
  Copyright terms: Public domain W3C validator