ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordiso Unicode version

Theorem ordiso 6358
Description: Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
ordiso  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  =  B  <->  E. f  f  Isom  _E  ,  _E  ( A ,  B ) ) )
Distinct variable groups:    A, f    B, f

Proof of Theorem ordiso
StepHypRef Expression
1 resiexg 4653 . . . . 5  |-  ( A  e.  On  ->  (  _I  |`  A )  e. 
_V )
2 isoid 5450 . . . . 5  |-  (  _I  |`  A )  Isom  _E  ,  _E  ( A ,  A
)
3 isoeq1 5441 . . . . . 6  |-  ( f  =  (  _I  |`  A )  ->  ( f  Isom  _E  ,  _E  ( A ,  A )  <->  (  _I  |`  A )  Isom  _E  ,  _E  ( A ,  A
) ) )
43spcegv 2641 . . . . 5  |-  ( (  _I  |`  A )  e.  _V  ->  ( (  _I  |`  A )  Isom  _E  ,  _E  ( A ,  A )  ->  E. f  f  Isom  _E  ,  _E  ( A ,  A ) ) )
51, 2, 4mpisyl 1335 . . . 4  |-  ( A  e.  On  ->  E. f 
f  Isom  _E  ,  _E  ( A ,  A ) )
65adantr 261 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  E. f  f  Isom  _E  ,  _E  ( A ,  A ) )
7 isoeq5 5445 . . . 4  |-  ( A  =  B  ->  (
f  Isom  _E  ,  _E  ( A ,  A )  <-> 
f  Isom  _E  ,  _E  ( A ,  B ) ) )
87exbidv 1706 . . 3  |-  ( A  =  B  ->  ( E. f  f  Isom  _E  ,  _E  ( A ,  A )  <->  E. f 
f  Isom  _E  ,  _E  ( A ,  B ) ) )
96, 8syl5ibcom 144 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  =  B  ->  E. f  f  Isom  _E  ,  _E  ( A ,  B ) ) )
10 eloni 4112 . . . 4  |-  ( A  e.  On  ->  Ord  A )
11 eloni 4112 . . . 4  |-  ( B  e.  On  ->  Ord  B )
12 ordiso2 6357 . . . . . 6  |-  ( ( f  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B )  ->  A  =  B )
13123coml 1111 . . . . 5  |-  ( ( Ord  A  /\  Ord  B  /\  f  Isom  _E  ,  _E  ( A ,  B
) )  ->  A  =  B )
14133expia 1106 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( f  Isom  _E  ,  _E  ( A ,  B )  ->  A  =  B ) )
1510, 11, 14syl2an 273 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( f  Isom  _E  ,  _E  ( A ,  B
)  ->  A  =  B ) )
1615exlimdv 1700 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f  f 
Isom  _E  ,  _E  ( A ,  B )  ->  A  =  B ) )
179, 16impbid 120 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  =  B  <->  E. f  f  Isom  _E  ,  _E  ( A ,  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393   _Vcvv 2557    _E cep 4024    _I cid 4025   Ord word 4099   Oncon0 4100    |` cres 4347    Isom wiso 4903
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-iord 4103  df-on 4105  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-isom 4911
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator