Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nummac | GIF version |
Description: Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numma.1 | ⊢ 𝑇 ∈ ℕ0 |
numma.2 | ⊢ 𝐴 ∈ ℕ0 |
numma.3 | ⊢ 𝐵 ∈ ℕ0 |
numma.4 | ⊢ 𝐶 ∈ ℕ0 |
numma.5 | ⊢ 𝐷 ∈ ℕ0 |
numma.6 | ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) |
numma.7 | ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) |
nummac.8 | ⊢ 𝑃 ∈ ℕ0 |
nummac.9 | ⊢ 𝐹 ∈ ℕ0 |
nummac.10 | ⊢ 𝐺 ∈ ℕ0 |
nummac.11 | ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 |
nummac.12 | ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) |
Ref | Expression |
---|---|
nummac | ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numma.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ0 | |
2 | 1 | nn0cni 8193 | . . . 4 ⊢ 𝑇 ∈ ℂ |
3 | numma.2 | . . . . . . . . 9 ⊢ 𝐴 ∈ ℕ0 | |
4 | 3 | nn0cni 8193 | . . . . . . . 8 ⊢ 𝐴 ∈ ℂ |
5 | nummac.8 | . . . . . . . . 9 ⊢ 𝑃 ∈ ℕ0 | |
6 | 5 | nn0cni 8193 | . . . . . . . 8 ⊢ 𝑃 ∈ ℂ |
7 | 4, 6 | mulcli 7032 | . . . . . . 7 ⊢ (𝐴 · 𝑃) ∈ ℂ |
8 | numma.4 | . . . . . . . 8 ⊢ 𝐶 ∈ ℕ0 | |
9 | 8 | nn0cni 8193 | . . . . . . 7 ⊢ 𝐶 ∈ ℂ |
10 | nummac.10 | . . . . . . . 8 ⊢ 𝐺 ∈ ℕ0 | |
11 | 10 | nn0cni 8193 | . . . . . . 7 ⊢ 𝐺 ∈ ℂ |
12 | 7, 9, 11 | addassi 7035 | . . . . . 6 ⊢ (((𝐴 · 𝑃) + 𝐶) + 𝐺) = ((𝐴 · 𝑃) + (𝐶 + 𝐺)) |
13 | nummac.11 | . . . . . 6 ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 | |
14 | 12, 13 | eqtri 2060 | . . . . 5 ⊢ (((𝐴 · 𝑃) + 𝐶) + 𝐺) = 𝐸 |
15 | 7, 9 | addcli 7031 | . . . . . 6 ⊢ ((𝐴 · 𝑃) + 𝐶) ∈ ℂ |
16 | 15, 11 | addcli 7031 | . . . . 5 ⊢ (((𝐴 · 𝑃) + 𝐶) + 𝐺) ∈ ℂ |
17 | 14, 16 | eqeltrri 2111 | . . . 4 ⊢ 𝐸 ∈ ℂ |
18 | 2, 17, 11 | subdii 7404 | . . 3 ⊢ (𝑇 · (𝐸 − 𝐺)) = ((𝑇 · 𝐸) − (𝑇 · 𝐺)) |
19 | 18 | oveq1i 5522 | . 2 ⊢ ((𝑇 · (𝐸 − 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
20 | numma.3 | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
21 | numma.5 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
22 | numma.6 | . . 3 ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) | |
23 | numma.7 | . . 3 ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) | |
24 | 17, 11, 15 | subadd2i 7299 | . . . . 5 ⊢ ((𝐸 − 𝐺) = ((𝐴 · 𝑃) + 𝐶) ↔ (((𝐴 · 𝑃) + 𝐶) + 𝐺) = 𝐸) |
25 | 14, 24 | mpbir 134 | . . . 4 ⊢ (𝐸 − 𝐺) = ((𝐴 · 𝑃) + 𝐶) |
26 | 25 | eqcomi 2044 | . . 3 ⊢ ((𝐴 · 𝑃) + 𝐶) = (𝐸 − 𝐺) |
27 | nummac.12 | . . 3 ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) | |
28 | 1, 3, 20, 8, 21, 22, 23, 5, 26, 27 | numma 8398 | . 2 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · (𝐸 − 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
29 | 2, 17 | mulcli 7032 | . . . . 5 ⊢ (𝑇 · 𝐸) ∈ ℂ |
30 | 2, 11 | mulcli 7032 | . . . . 5 ⊢ (𝑇 · 𝐺) ∈ ℂ |
31 | npcan 7220 | . . . . 5 ⊢ (((𝑇 · 𝐸) ∈ ℂ ∧ (𝑇 · 𝐺) ∈ ℂ) → (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) = (𝑇 · 𝐸)) | |
32 | 29, 30, 31 | mp2an 402 | . . . 4 ⊢ (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) = (𝑇 · 𝐸) |
33 | 32 | oveq1i 5522 | . . 3 ⊢ ((((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) + 𝐹) = ((𝑇 · 𝐸) + 𝐹) |
34 | 29, 30 | subcli 7287 | . . . 4 ⊢ ((𝑇 · 𝐸) − (𝑇 · 𝐺)) ∈ ℂ |
35 | nummac.9 | . . . . 5 ⊢ 𝐹 ∈ ℕ0 | |
36 | 35 | nn0cni 8193 | . . . 4 ⊢ 𝐹 ∈ ℂ |
37 | 34, 30, 36 | addassi 7035 | . . 3 ⊢ ((((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) + 𝐹) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
38 | 33, 37 | eqtr3i 2062 | . 2 ⊢ ((𝑇 · 𝐸) + 𝐹) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
39 | 19, 28, 38 | 3eqtr4i 2070 | 1 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 ∈ wcel 1393 (class class class)co 5512 ℂcc 6887 + caddc 6892 · cmul 6894 − cmin 7182 ℕ0cn0 8181 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-setind 4262 ax-cnex 6975 ax-resscn 6976 ax-1cn 6977 ax-1re 6978 ax-icn 6979 ax-addcl 6980 ax-addrcl 6981 ax-mulcl 6982 ax-addcom 6984 ax-mulcom 6985 ax-addass 6986 ax-mulass 6987 ax-distr 6988 ax-i2m1 6989 ax-0id 6992 ax-rnegex 6993 ax-cnre 6995 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-br 3765 df-opab 3819 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-iota 4867 df-fun 4904 df-fv 4910 df-riota 5468 df-ov 5515 df-oprab 5516 df-mpt2 5517 df-sub 7184 df-inn 7915 df-n0 8182 |
This theorem is referenced by: numma2c 8400 numaddc 8402 nummul1c 8403 decmac 8406 |
Copyright terms: Public domain | W3C validator |