ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numma GIF version

Theorem numma 8398
Description: Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1 𝑇 ∈ ℕ0
numma.2 𝐴 ∈ ℕ0
numma.3 𝐵 ∈ ℕ0
numma.4 𝐶 ∈ ℕ0
numma.5 𝐷 ∈ ℕ0
numma.6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
numma.7 𝑁 = ((𝑇 · 𝐶) + 𝐷)
numma.8 𝑃 ∈ ℕ0
numma.9 ((𝐴 · 𝑃) + 𝐶) = 𝐸
numma.10 ((𝐵 · 𝑃) + 𝐷) = 𝐹
Assertion
Ref Expression
numma ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)

Proof of Theorem numma
StepHypRef Expression
1 numma.6 . . . 4 𝑀 = ((𝑇 · 𝐴) + 𝐵)
21oveq1i 5522 . . 3 (𝑀 · 𝑃) = (((𝑇 · 𝐴) + 𝐵) · 𝑃)
3 numma.7 . . 3 𝑁 = ((𝑇 · 𝐶) + 𝐷)
42, 3oveq12i 5524 . 2 ((𝑀 · 𝑃) + 𝑁) = ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷))
5 numma.1 . . . . . . 7 𝑇 ∈ ℕ0
65nn0cni 8193 . . . . . 6 𝑇 ∈ ℂ
7 numma.2 . . . . . . . 8 𝐴 ∈ ℕ0
87nn0cni 8193 . . . . . . 7 𝐴 ∈ ℂ
9 numma.8 . . . . . . . 8 𝑃 ∈ ℕ0
109nn0cni 8193 . . . . . . 7 𝑃 ∈ ℂ
118, 10mulcli 7032 . . . . . 6 (𝐴 · 𝑃) ∈ ℂ
12 numma.4 . . . . . . 7 𝐶 ∈ ℕ0
1312nn0cni 8193 . . . . . 6 𝐶 ∈ ℂ
146, 11, 13adddii 7037 . . . . 5 (𝑇 · ((𝐴 · 𝑃) + 𝐶)) = ((𝑇 · (𝐴 · 𝑃)) + (𝑇 · 𝐶))
156, 8, 10mulassi 7036 . . . . . 6 ((𝑇 · 𝐴) · 𝑃) = (𝑇 · (𝐴 · 𝑃))
1615oveq1i 5522 . . . . 5 (((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) = ((𝑇 · (𝐴 · 𝑃)) + (𝑇 · 𝐶))
1714, 16eqtr4i 2063 . . . 4 (𝑇 · ((𝐴 · 𝑃) + 𝐶)) = (((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶))
1817oveq1i 5522 . . 3 ((𝑇 · ((𝐴 · 𝑃) + 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) + ((𝐵 · 𝑃) + 𝐷))
196, 8mulcli 7032 . . . . . 6 (𝑇 · 𝐴) ∈ ℂ
20 numma.3 . . . . . . 7 𝐵 ∈ ℕ0
2120nn0cni 8193 . . . . . 6 𝐵 ∈ ℂ
2219, 21, 10adddiri 7038 . . . . 5 (((𝑇 · 𝐴) + 𝐵) · 𝑃) = (((𝑇 · 𝐴) · 𝑃) + (𝐵 · 𝑃))
2322oveq1i 5522 . . . 4 ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝐵 · 𝑃)) + ((𝑇 · 𝐶) + 𝐷))
2419, 10mulcli 7032 . . . . 5 ((𝑇 · 𝐴) · 𝑃) ∈ ℂ
256, 13mulcli 7032 . . . . 5 (𝑇 · 𝐶) ∈ ℂ
2621, 10mulcli 7032 . . . . 5 (𝐵 · 𝑃) ∈ ℂ
27 numma.5 . . . . . 6 𝐷 ∈ ℕ0
2827nn0cni 8193 . . . . 5 𝐷 ∈ ℂ
2924, 25, 26, 28add4i 7176 . . . 4 ((((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝐵 · 𝑃)) + ((𝑇 · 𝐶) + 𝐷))
3023, 29eqtr4i 2063 . . 3 ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷)) = ((((𝑇 · 𝐴) · 𝑃) + (𝑇 · 𝐶)) + ((𝐵 · 𝑃) + 𝐷))
3118, 30eqtr4i 2063 . 2 ((𝑇 · ((𝐴 · 𝑃) + 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((((𝑇 · 𝐴) + 𝐵) · 𝑃) + ((𝑇 · 𝐶) + 𝐷))
32 numma.9 . . . 4 ((𝐴 · 𝑃) + 𝐶) = 𝐸
3332oveq2i 5523 . . 3 (𝑇 · ((𝐴 · 𝑃) + 𝐶)) = (𝑇 · 𝐸)
34 numma.10 . . 3 ((𝐵 · 𝑃) + 𝐷) = 𝐹
3533, 34oveq12i 5524 . 2 ((𝑇 · ((𝐴 · 𝑃) + 𝐶)) + ((𝐵 · 𝑃) + 𝐷)) = ((𝑇 · 𝐸) + 𝐹)
364, 31, 353eqtr2i 2066 1 ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
Colors of variables: wff set class
Syntax hints:   = wceq 1243  wcel 1393  (class class class)co 5512   + caddc 6892   · cmul 6894  0cn0 8181
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-cnex 6975  ax-resscn 6976  ax-1re 6978  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-rnegex 6993
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515  df-inn 7915  df-n0 8182
This theorem is referenced by:  nummac  8399  numadd  8401  decma  8405
  Copyright terms: Public domain W3C validator