![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addpiord | GIF version |
Description: Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.) |
Ref | Expression |
---|---|
addpiord | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +𝑜 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 4376 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 〈𝐴, 𝐵〉 ∈ (N × N)) | |
2 | fvres 5198 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (( +𝑜 ↾ (N × N))‘〈𝐴, 𝐵〉) = ( +𝑜 ‘〈𝐴, 𝐵〉)) | |
3 | df-ov 5515 | . . . 4 ⊢ (𝐴 +N 𝐵) = ( +N ‘〈𝐴, 𝐵〉) | |
4 | df-pli 6403 | . . . . 5 ⊢ +N = ( +𝑜 ↾ (N × N)) | |
5 | 4 | fveq1i 5179 | . . . 4 ⊢ ( +N ‘〈𝐴, 𝐵〉) = (( +𝑜 ↾ (N × N))‘〈𝐴, 𝐵〉) |
6 | 3, 5 | eqtri 2060 | . . 3 ⊢ (𝐴 +N 𝐵) = (( +𝑜 ↾ (N × N))‘〈𝐴, 𝐵〉) |
7 | df-ov 5515 | . . 3 ⊢ (𝐴 +𝑜 𝐵) = ( +𝑜 ‘〈𝐴, 𝐵〉) | |
8 | 2, 6, 7 | 3eqtr4g 2097 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (𝐴 +N 𝐵) = (𝐴 +𝑜 𝐵)) |
9 | 1, 8 | syl 14 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +𝑜 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 = wceq 1243 ∈ wcel 1393 〈cop 3378 × cxp 4343 ↾ cres 4347 ‘cfv 4902 (class class class)co 5512 +𝑜 coa 5998 Ncnpi 6370 +N cpli 6371 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-xp 4351 df-res 4357 df-iota 4867 df-fv 4910 df-ov 5515 df-pli 6403 |
This theorem is referenced by: addclpi 6425 addcompig 6427 addasspig 6428 distrpig 6431 addcanpig 6432 addnidpig 6434 ltexpi 6435 ltapig 6436 1lt2pi 6438 indpi 6440 archnqq 6515 prarloclemarch2 6517 nqnq0a 6552 |
Copyright terms: Public domain | W3C validator |