Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltapig | GIF version |
Description: Ordering property of addition for positive integers. (Contributed by Jim Kingdon, 31-Aug-2019.) |
Ref | Expression |
---|---|
ltapig | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 6407 | . . . . 5 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
2 | pinn 6407 | . . . . 5 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
3 | pinn 6407 | . . . . 5 ⊢ (𝐶 ∈ N → 𝐶 ∈ ω) | |
4 | nnaord 6082 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵))) | |
5 | 1, 2, 3, 4 | syl3an 1177 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ∈ 𝐵 ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵))) |
6 | 5 | 3expa 1104 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → (𝐴 ∈ 𝐵 ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵))) |
7 | ltpiord 6417 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
8 | 7 | adantr 261 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) |
9 | addclpi 6425 | . . . . . . 7 ⊢ ((𝐶 ∈ N ∧ 𝐴 ∈ N) → (𝐶 +N 𝐴) ∈ N) | |
10 | addclpi 6425 | . . . . . . 7 ⊢ ((𝐶 ∈ N ∧ 𝐵 ∈ N) → (𝐶 +N 𝐵) ∈ N) | |
11 | ltpiord 6417 | . . . . . . 7 ⊢ (((𝐶 +N 𝐴) ∈ N ∧ (𝐶 +N 𝐵) ∈ N) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵))) | |
12 | 9, 10, 11 | syl2an 273 | . . . . . 6 ⊢ (((𝐶 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐵 ∈ N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵))) |
13 | addpiord 6414 | . . . . . . . 8 ⊢ ((𝐶 ∈ N ∧ 𝐴 ∈ N) → (𝐶 +N 𝐴) = (𝐶 +𝑜 𝐴)) | |
14 | 13 | adantr 261 | . . . . . . 7 ⊢ (((𝐶 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐵 ∈ N)) → (𝐶 +N 𝐴) = (𝐶 +𝑜 𝐴)) |
15 | addpiord 6414 | . . . . . . . 8 ⊢ ((𝐶 ∈ N ∧ 𝐵 ∈ N) → (𝐶 +N 𝐵) = (𝐶 +𝑜 𝐵)) | |
16 | 15 | adantl 262 | . . . . . . 7 ⊢ (((𝐶 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐵 ∈ N)) → (𝐶 +N 𝐵) = (𝐶 +𝑜 𝐵)) |
17 | 14, 16 | eleq12d 2108 | . . . . . 6 ⊢ (((𝐶 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐵 ∈ N)) → ((𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵) ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵))) |
18 | 12, 17 | bitrd 177 | . . . . 5 ⊢ (((𝐶 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐵 ∈ N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵))) |
19 | 18 | anandis 526 | . . . 4 ⊢ ((𝐶 ∈ N ∧ (𝐴 ∈ N ∧ 𝐵 ∈ N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵))) |
20 | 19 | ancoms 255 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵))) |
21 | 6, 8, 20 | 3bitr4d 209 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵))) |
22 | 21 | 3impa 1099 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 ∧ w3a 885 = wceq 1243 ∈ wcel 1393 class class class wbr 3764 ωcom 4313 (class class class)co 5512 +𝑜 coa 5998 Ncnpi 6370 +N cpli 6371 <N clti 6373 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-coll 3872 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 ax-iinf 4311 |
This theorem depends on definitions: df-bi 110 df-dc 743 df-3or 886 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-tr 3855 df-eprel 4026 df-id 4030 df-iord 4103 df-on 4105 df-suc 4108 df-iom 4314 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 df-ov 5515 df-oprab 5516 df-mpt2 5517 df-1st 5767 df-2nd 5768 df-recs 5920 df-irdg 5957 df-oadd 6005 df-ni 6402 df-pli 6403 df-lti 6405 |
This theorem is referenced by: ltanqg 6498 |
Copyright terms: Public domain | W3C validator |