ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmpig GIF version

Theorem ltmpig 6437
Description: Ordering property of multiplication for positive integers. (Contributed by Jim Kingdon, 31-Aug-2019.)
Assertion
Ref Expression
ltmpig ((𝐴N𝐵N𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵)))

Proof of Theorem ltmpig
StepHypRef Expression
1 pinn 6407 . . . . 5 (𝐴N𝐴 ∈ ω)
2 pinn 6407 . . . . 5 (𝐵N𝐵 ∈ ω)
3 elni2 6412 . . . . . 6 (𝐶N ↔ (𝐶 ∈ ω ∧ ∅ ∈ 𝐶))
4 iba 284 . . . . . . . . 9 (∅ ∈ 𝐶 → (𝐴𝐵 ↔ (𝐴𝐵 ∧ ∅ ∈ 𝐶)))
5 nnmord 6090 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
64, 5sylan9bbr 436 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
763exp1 1120 . . . . . . 7 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐶 ∈ ω → (∅ ∈ 𝐶 → (𝐴𝐵 ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))))
87imp4b 332 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐶 ∈ ω ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))
93, 8syl5bi 141 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶N → (𝐴𝐵 ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))
101, 2, 9syl2an 273 . . . 4 ((𝐴N𝐵N) → (𝐶N → (𝐴𝐵 ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))))
1110imp 115 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴𝐵 ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
12 ltpiord 6417 . . . 4 ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))
1312adantr 261 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 <N 𝐵𝐴𝐵))
14 mulclpi 6426 . . . . . . 7 ((𝐶N𝐴N) → (𝐶 ·N 𝐴) ∈ N)
15 mulclpi 6426 . . . . . . 7 ((𝐶N𝐵N) → (𝐶 ·N 𝐵) ∈ N)
16 ltpiord 6417 . . . . . . 7 (((𝐶 ·N 𝐴) ∈ N ∧ (𝐶 ·N 𝐵) ∈ N) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵)))
1714, 15, 16syl2an 273 . . . . . 6 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵)))
18 mulpiord 6415 . . . . . . . 8 ((𝐶N𝐴N) → (𝐶 ·N 𝐴) = (𝐶 ·𝑜 𝐴))
1918adantr 261 . . . . . . 7 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → (𝐶 ·N 𝐴) = (𝐶 ·𝑜 𝐴))
20 mulpiord 6415 . . . . . . . 8 ((𝐶N𝐵N) → (𝐶 ·N 𝐵) = (𝐶 ·𝑜 𝐵))
2120adantl 262 . . . . . . 7 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → (𝐶 ·N 𝐵) = (𝐶 ·𝑜 𝐵))
2219, 21eleq12d 2108 . . . . . 6 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
2317, 22bitrd 177 . . . . 5 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
2423anandis 526 . . . 4 ((𝐶N ∧ (𝐴N𝐵N)) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
2524ancoms 255 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
2611, 13, 253bitr4d 209 . 2 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵)))
27263impa 1099 1 ((𝐴N𝐵N𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wcel 1393  c0 3224   class class class wbr 3764  ωcom 4313  (class class class)co 5512   ·𝑜 comu 5999  Ncnpi 6370   ·N cmi 6372   <N clti 6373
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005  df-omul 6006  df-ni 6402  df-mi 6404  df-lti 6405
This theorem is referenced by:  ordpipqqs  6472  ltsonq  6496  ltanqg  6498  ltmnqg  6499  1lt2nq  6504
  Copyright terms: Public domain W3C validator