ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmsucr GIF version

Theorem nnmsucr 6067
Description: Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmsucr ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·𝑜 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐵))

Proof of Theorem nnmsucr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5520 . . . . 5 (𝑥 = 𝐵 → (suc 𝐴 ·𝑜 𝑥) = (suc 𝐴 ·𝑜 𝐵))
2 oveq2 5520 . . . . . 6 (𝑥 = 𝐵 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝐵))
3 id 19 . . . . . 6 (𝑥 = 𝐵𝑥 = 𝐵)
42, 3oveq12d 5530 . . . . 5 (𝑥 = 𝐵 → ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐵))
51, 4eqeq12d 2054 . . . 4 (𝑥 = 𝐵 → ((suc 𝐴 ·𝑜 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) ↔ (suc 𝐴 ·𝑜 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐵)))
65imbi2d 219 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (suc 𝐴 ·𝑜 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝑥)) ↔ (𝐴 ∈ ω → (suc 𝐴 ·𝑜 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐵))))
7 oveq2 5520 . . . . 5 (𝑥 = ∅ → (suc 𝐴 ·𝑜 𝑥) = (suc 𝐴 ·𝑜 ∅))
8 oveq2 5520 . . . . . 6 (𝑥 = ∅ → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 ∅))
9 id 19 . . . . . 6 (𝑥 = ∅ → 𝑥 = ∅)
108, 9oveq12d 5530 . . . . 5 (𝑥 = ∅ → ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) = ((𝐴 ·𝑜 ∅) +𝑜 ∅))
117, 10eqeq12d 2054 . . . 4 (𝑥 = ∅ → ((suc 𝐴 ·𝑜 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) ↔ (suc 𝐴 ·𝑜 ∅) = ((𝐴 ·𝑜 ∅) +𝑜 ∅)))
12 oveq2 5520 . . . . 5 (𝑥 = 𝑦 → (suc 𝐴 ·𝑜 𝑥) = (suc 𝐴 ·𝑜 𝑦))
13 oveq2 5520 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝑦))
14 id 19 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
1513, 14oveq12d 5530 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) = ((𝐴 ·𝑜 𝑦) +𝑜 𝑦))
1612, 15eqeq12d 2054 . . . 4 (𝑥 = 𝑦 → ((suc 𝐴 ·𝑜 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) ↔ (suc 𝐴 ·𝑜 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝑦)))
17 oveq2 5520 . . . . 5 (𝑥 = suc 𝑦 → (suc 𝐴 ·𝑜 𝑥) = (suc 𝐴 ·𝑜 suc 𝑦))
18 oveq2 5520 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 suc 𝑦))
19 id 19 . . . . . 6 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
2018, 19oveq12d 5530 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) = ((𝐴 ·𝑜 suc 𝑦) +𝑜 suc 𝑦))
2117, 20eqeq12d 2054 . . . 4 (𝑥 = suc 𝑦 → ((suc 𝐴 ·𝑜 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) ↔ (suc 𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 suc 𝑦) +𝑜 suc 𝑦)))
22 peano2 4318 . . . . . . 7 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
23 nnm0 6054 . . . . . . 7 (suc 𝐴 ∈ ω → (suc 𝐴 ·𝑜 ∅) = ∅)
2422, 23syl 14 . . . . . 6 (𝐴 ∈ ω → (suc 𝐴 ·𝑜 ∅) = ∅)
25 nnm0 6054 . . . . . 6 (𝐴 ∈ ω → (𝐴 ·𝑜 ∅) = ∅)
2624, 25eqtr4d 2075 . . . . 5 (𝐴 ∈ ω → (suc 𝐴 ·𝑜 ∅) = (𝐴 ·𝑜 ∅))
27 peano1 4317 . . . . . . 7 ∅ ∈ ω
28 nnmcl 6060 . . . . . . 7 ((𝐴 ∈ ω ∧ ∅ ∈ ω) → (𝐴 ·𝑜 ∅) ∈ ω)
2927, 28mpan2 401 . . . . . 6 (𝐴 ∈ ω → (𝐴 ·𝑜 ∅) ∈ ω)
30 nna0 6053 . . . . . 6 ((𝐴 ·𝑜 ∅) ∈ ω → ((𝐴 ·𝑜 ∅) +𝑜 ∅) = (𝐴 ·𝑜 ∅))
3129, 30syl 14 . . . . 5 (𝐴 ∈ ω → ((𝐴 ·𝑜 ∅) +𝑜 ∅) = (𝐴 ·𝑜 ∅))
3226, 31eqtr4d 2075 . . . 4 (𝐴 ∈ ω → (suc 𝐴 ·𝑜 ∅) = ((𝐴 ·𝑜 ∅) +𝑜 ∅))
33 oveq1 5519 . . . . . 6 ((suc 𝐴 ·𝑜 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝑦) → ((suc 𝐴 ·𝑜 𝑦) +𝑜 suc 𝐴) = (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴))
34 peano2b 4337 . . . . . . . 8 (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
35 nnmsuc 6056 . . . . . . . 8 ((suc 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 ·𝑜 suc 𝑦) = ((suc 𝐴 ·𝑜 𝑦) +𝑜 suc 𝐴))
3634, 35sylanb 268 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 ·𝑜 suc 𝑦) = ((suc 𝐴 ·𝑜 𝑦) +𝑜 suc 𝐴))
37 nnmcl 6060 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·𝑜 𝑦) ∈ ω)
38 peano2b 4337 . . . . . . . . . . . 12 (𝑦 ∈ ω ↔ suc 𝑦 ∈ ω)
39 nnaass 6064 . . . . . . . . . . . 12 (((𝐴 ·𝑜 𝑦) ∈ ω ∧ 𝐴 ∈ ω ∧ suc 𝑦 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝐴) +𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝐴 +𝑜 suc 𝑦)))
4038, 39syl3an3b 1173 . . . . . . . . . . 11 (((𝐴 ·𝑜 𝑦) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝐴) +𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝐴 +𝑜 suc 𝑦)))
4137, 40syl3an1 1168 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝐴) +𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝐴 +𝑜 suc 𝑦)))
42413expb 1105 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝐴 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝐴 ·𝑜 𝑦) +𝑜 𝐴) +𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝐴 +𝑜 suc 𝑦)))
4342anidms 377 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝐴) +𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝐴 +𝑜 suc 𝑦)))
44 nnmsuc 6056 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))
4544oveq1d 5527 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜 suc 𝑦) +𝑜 suc 𝑦) = (((𝐴 ·𝑜 𝑦) +𝑜 𝐴) +𝑜 suc 𝑦))
46 nnaass 6064 . . . . . . . . . . . . . 14 (((𝐴 ·𝑜 𝑦) ∈ ω ∧ 𝑦 ∈ ω ∧ suc 𝐴 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝑦 +𝑜 suc 𝐴)))
4734, 46syl3an3b 1173 . . . . . . . . . . . . 13 (((𝐴 ·𝑜 𝑦) ∈ ω ∧ 𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝑦 +𝑜 suc 𝐴)))
4837, 47syl3an1 1168 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝑦 +𝑜 suc 𝐴)))
49483expb 1105 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝑦 ∈ ω ∧ 𝐴 ∈ ω)) → (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝑦 +𝑜 suc 𝐴)))
5049an42s 523 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝐴 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝑦 +𝑜 suc 𝐴)))
5150anidms 377 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝑦 +𝑜 suc 𝐴)))
52 nnacom 6063 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +𝑜 𝑦) = (𝑦 +𝑜 𝐴))
53 suceq 4139 . . . . . . . . . . . 12 ((𝐴 +𝑜 𝑦) = (𝑦 +𝑜 𝐴) → suc (𝐴 +𝑜 𝑦) = suc (𝑦 +𝑜 𝐴))
5452, 53syl 14 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝐴 +𝑜 𝑦) = suc (𝑦 +𝑜 𝐴))
55 nnasuc 6055 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +𝑜 suc 𝑦) = suc (𝐴 +𝑜 𝑦))
56 nnasuc 6055 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝑦 +𝑜 suc 𝐴) = suc (𝑦 +𝑜 𝐴))
5756ancoms 255 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +𝑜 suc 𝐴) = suc (𝑦 +𝑜 𝐴))
5854, 55, 573eqtr4d 2082 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +𝑜 suc 𝑦) = (𝑦 +𝑜 suc 𝐴))
5958oveq2d 5528 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜 𝑦) +𝑜 (𝐴 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝑦 +𝑜 suc 𝐴)))
6051, 59eqtr4d 2075 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝐴 +𝑜 suc 𝑦)))
6143, 45, 603eqtr4d 2082 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜 suc 𝑦) +𝑜 suc 𝑦) = (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴))
6236, 61eqeq12d 2054 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 suc 𝑦) +𝑜 suc 𝑦) ↔ ((suc 𝐴 ·𝑜 𝑦) +𝑜 suc 𝐴) = (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴)))
6333, 62syl5ibr 145 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝐴 ·𝑜 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝑦) → (suc 𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 suc 𝑦) +𝑜 suc 𝑦)))
6463expcom 109 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((suc 𝐴 ·𝑜 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝑦) → (suc 𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 suc 𝑦) +𝑜 suc 𝑦))))
6511, 16, 21, 32, 64finds2 4324 . . 3 (𝑥 ∈ ω → (𝐴 ∈ ω → (suc 𝐴 ·𝑜 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝑥)))
666, 65vtoclga 2619 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (suc 𝐴 ·𝑜 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐵)))
6766impcom 116 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·𝑜 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  c0 3224  suc csuc 4102  ωcom 4313  (class class class)co 5512   +𝑜 coa 5998   ·𝑜 comu 5999
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005  df-omul 6006
This theorem is referenced by:  nnmcom  6068
  Copyright terms: Public domain W3C validator