ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nneneq GIF version

Theorem nneneq 6320
Description: Two equinumerous natural numbers are equal. Proposition 10.20 of [TakeutiZaring] p. 90 and its converse. Also compare Corollary 6E of [Enderton] p. 136. (Contributed by NM, 28-May-1998.)
Assertion
Ref Expression
nneneq ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem nneneq
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3767 . . . . . 6 (𝑥 = ∅ → (𝑥𝑧 ↔ ∅ ≈ 𝑧))
2 eqeq1 2046 . . . . . 6 (𝑥 = ∅ → (𝑥 = 𝑧 ↔ ∅ = 𝑧))
31, 2imbi12d 223 . . . . 5 (𝑥 = ∅ → ((𝑥𝑧𝑥 = 𝑧) ↔ (∅ ≈ 𝑧 → ∅ = 𝑧)))
43ralbidv 2326 . . . 4 (𝑥 = ∅ → (∀𝑧 ∈ ω (𝑥𝑧𝑥 = 𝑧) ↔ ∀𝑧 ∈ ω (∅ ≈ 𝑧 → ∅ = 𝑧)))
5 breq1 3767 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
6 eqeq1 2046 . . . . . 6 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
75, 6imbi12d 223 . . . . 5 (𝑥 = 𝑦 → ((𝑥𝑧𝑥 = 𝑧) ↔ (𝑦𝑧𝑦 = 𝑧)))
87ralbidv 2326 . . . 4 (𝑥 = 𝑦 → (∀𝑧 ∈ ω (𝑥𝑧𝑥 = 𝑧) ↔ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)))
9 breq1 3767 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥𝑧 ↔ suc 𝑦𝑧))
10 eqeq1 2046 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥 = 𝑧 ↔ suc 𝑦 = 𝑧))
119, 10imbi12d 223 . . . . 5 (𝑥 = suc 𝑦 → ((𝑥𝑧𝑥 = 𝑧) ↔ (suc 𝑦𝑧 → suc 𝑦 = 𝑧)))
1211ralbidv 2326 . . . 4 (𝑥 = suc 𝑦 → (∀𝑧 ∈ ω (𝑥𝑧𝑥 = 𝑧) ↔ ∀𝑧 ∈ ω (suc 𝑦𝑧 → suc 𝑦 = 𝑧)))
13 breq1 3767 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑧𝐴𝑧))
14 eqeq1 2046 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = 𝑧𝐴 = 𝑧))
1513, 14imbi12d 223 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑧𝑥 = 𝑧) ↔ (𝐴𝑧𝐴 = 𝑧)))
1615ralbidv 2326 . . . 4 (𝑥 = 𝐴 → (∀𝑧 ∈ ω (𝑥𝑧𝑥 = 𝑧) ↔ ∀𝑧 ∈ ω (𝐴𝑧𝐴 = 𝑧)))
17 ensym 6261 . . . . . 6 (∅ ≈ 𝑧𝑧 ≈ ∅)
18 en0 6275 . . . . . . 7 (𝑧 ≈ ∅ ↔ 𝑧 = ∅)
19 eqcom 2042 . . . . . . 7 (𝑧 = ∅ ↔ ∅ = 𝑧)
2018, 19bitri 173 . . . . . 6 (𝑧 ≈ ∅ ↔ ∅ = 𝑧)
2117, 20sylib 127 . . . . 5 (∅ ≈ 𝑧 → ∅ = 𝑧)
2221rgenw 2376 . . . 4 𝑧 ∈ ω (∅ ≈ 𝑧 → ∅ = 𝑧)
23 nn0suc 4327 . . . . . . 7 (𝑤 ∈ ω → (𝑤 = ∅ ∨ ∃𝑧 ∈ ω 𝑤 = suc 𝑧))
24 en0 6275 . . . . . . . . . . . 12 (suc 𝑦 ≈ ∅ ↔ suc 𝑦 = ∅)
25 breq2 3768 . . . . . . . . . . . . 13 (𝑤 = ∅ → (suc 𝑦𝑤 ↔ suc 𝑦 ≈ ∅))
26 eqeq2 2049 . . . . . . . . . . . . 13 (𝑤 = ∅ → (suc 𝑦 = 𝑤 ↔ suc 𝑦 = ∅))
2725, 26bibi12d 224 . . . . . . . . . . . 12 (𝑤 = ∅ → ((suc 𝑦𝑤 ↔ suc 𝑦 = 𝑤) ↔ (suc 𝑦 ≈ ∅ ↔ suc 𝑦 = ∅)))
2824, 27mpbiri 157 . . . . . . . . . . 11 (𝑤 = ∅ → (suc 𝑦𝑤 ↔ suc 𝑦 = 𝑤))
2928biimpd 132 . . . . . . . . . 10 (𝑤 = ∅ → (suc 𝑦𝑤 → suc 𝑦 = 𝑤))
3029a1i 9 . . . . . . . . 9 ((𝑦 ∈ ω ∧ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)) → (𝑤 = ∅ → (suc 𝑦𝑤 → suc 𝑦 = 𝑤)))
31 nfv 1421 . . . . . . . . . . 11 𝑧 𝑦 ∈ ω
32 nfra1 2355 . . . . . . . . . . 11 𝑧𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)
3331, 32nfan 1457 . . . . . . . . . 10 𝑧(𝑦 ∈ ω ∧ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧))
34 nfv 1421 . . . . . . . . . 10 𝑧(suc 𝑦𝑤 → suc 𝑦 = 𝑤)
35 rsp 2369 . . . . . . . . . . . . . 14 (∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧) → (𝑧 ∈ ω → (𝑦𝑧𝑦 = 𝑧)))
36 vex 2560 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
37 vex 2560 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
3836, 37phplem4 6318 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (suc 𝑦 ≈ suc 𝑧𝑦𝑧))
3938imim1d 69 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦𝑧𝑦 = 𝑧) → (suc 𝑦 ≈ suc 𝑧𝑦 = 𝑧)))
4039ex 108 . . . . . . . . . . . . . . 15 (𝑦 ∈ ω → (𝑧 ∈ ω → ((𝑦𝑧𝑦 = 𝑧) → (suc 𝑦 ≈ suc 𝑧𝑦 = 𝑧))))
4140a2d 23 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → ((𝑧 ∈ ω → (𝑦𝑧𝑦 = 𝑧)) → (𝑧 ∈ ω → (suc 𝑦 ≈ suc 𝑧𝑦 = 𝑧))))
4235, 41syl5 28 . . . . . . . . . . . . 13 (𝑦 ∈ ω → (∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧) → (𝑧 ∈ ω → (suc 𝑦 ≈ suc 𝑧𝑦 = 𝑧))))
4342imp 115 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)) → (𝑧 ∈ ω → (suc 𝑦 ≈ suc 𝑧𝑦 = 𝑧)))
44 suceq 4139 . . . . . . . . . . . 12 (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧)
4543, 44syl8 65 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)) → (𝑧 ∈ ω → (suc 𝑦 ≈ suc 𝑧 → suc 𝑦 = suc 𝑧)))
46 breq2 3768 . . . . . . . . . . . . 13 (𝑤 = suc 𝑧 → (suc 𝑦𝑤 ↔ suc 𝑦 ≈ suc 𝑧))
47 eqeq2 2049 . . . . . . . . . . . . 13 (𝑤 = suc 𝑧 → (suc 𝑦 = 𝑤 ↔ suc 𝑦 = suc 𝑧))
4846, 47imbi12d 223 . . . . . . . . . . . 12 (𝑤 = suc 𝑧 → ((suc 𝑦𝑤 → suc 𝑦 = 𝑤) ↔ (suc 𝑦 ≈ suc 𝑧 → suc 𝑦 = suc 𝑧)))
4948biimprcd 149 . . . . . . . . . . 11 ((suc 𝑦 ≈ suc 𝑧 → suc 𝑦 = suc 𝑧) → (𝑤 = suc 𝑧 → (suc 𝑦𝑤 → suc 𝑦 = 𝑤)))
5045, 49syl6 29 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)) → (𝑧 ∈ ω → (𝑤 = suc 𝑧 → (suc 𝑦𝑤 → suc 𝑦 = 𝑤))))
5133, 34, 50rexlimd 2430 . . . . . . . . 9 ((𝑦 ∈ ω ∧ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)) → (∃𝑧 ∈ ω 𝑤 = suc 𝑧 → (suc 𝑦𝑤 → suc 𝑦 = 𝑤)))
5230, 51jaod 637 . . . . . . . 8 ((𝑦 ∈ ω ∧ ∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧)) → ((𝑤 = ∅ ∨ ∃𝑧 ∈ ω 𝑤 = suc 𝑧) → (suc 𝑦𝑤 → suc 𝑦 = 𝑤)))
5352ex 108 . . . . . . 7 (𝑦 ∈ ω → (∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧) → ((𝑤 = ∅ ∨ ∃𝑧 ∈ ω 𝑤 = suc 𝑧) → (suc 𝑦𝑤 → suc 𝑦 = 𝑤))))
5423, 53syl7 63 . . . . . 6 (𝑦 ∈ ω → (∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧) → (𝑤 ∈ ω → (suc 𝑦𝑤 → suc 𝑦 = 𝑤))))
5554ralrimdv 2398 . . . . 5 (𝑦 ∈ ω → (∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧) → ∀𝑤 ∈ ω (suc 𝑦𝑤 → suc 𝑦 = 𝑤)))
56 breq2 3768 . . . . . . 7 (𝑤 = 𝑧 → (suc 𝑦𝑤 ↔ suc 𝑦𝑧))
57 eqeq2 2049 . . . . . . 7 (𝑤 = 𝑧 → (suc 𝑦 = 𝑤 ↔ suc 𝑦 = 𝑧))
5856, 57imbi12d 223 . . . . . 6 (𝑤 = 𝑧 → ((suc 𝑦𝑤 → suc 𝑦 = 𝑤) ↔ (suc 𝑦𝑧 → suc 𝑦 = 𝑧)))
5958cbvralv 2533 . . . . 5 (∀𝑤 ∈ ω (suc 𝑦𝑤 → suc 𝑦 = 𝑤) ↔ ∀𝑧 ∈ ω (suc 𝑦𝑧 → suc 𝑦 = 𝑧))
6055, 59syl6ib 150 . . . 4 (𝑦 ∈ ω → (∀𝑧 ∈ ω (𝑦𝑧𝑦 = 𝑧) → ∀𝑧 ∈ ω (suc 𝑦𝑧 → suc 𝑦 = 𝑧)))
614, 8, 12, 16, 22, 60finds 4323 . . 3 (𝐴 ∈ ω → ∀𝑧 ∈ ω (𝐴𝑧𝐴 = 𝑧))
62 breq2 3768 . . . . 5 (𝑧 = 𝐵 → (𝐴𝑧𝐴𝐵))
63 eqeq2 2049 . . . . 5 (𝑧 = 𝐵 → (𝐴 = 𝑧𝐴 = 𝐵))
6462, 63imbi12d 223 . . . 4 (𝑧 = 𝐵 → ((𝐴𝑧𝐴 = 𝑧) ↔ (𝐴𝐵𝐴 = 𝐵)))
6564rspcv 2652 . . 3 (𝐵 ∈ ω → (∀𝑧 ∈ ω (𝐴𝑧𝐴 = 𝑧) → (𝐴𝐵𝐴 = 𝐵)))
6661, 65mpan9 265 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
67 eqeng 6246 . . 3 (𝐴 ∈ ω → (𝐴 = 𝐵𝐴𝐵))
6867adantr 261 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵𝐴𝐵))
6966, 68impbid 120 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wo 629   = wceq 1243  wcel 1393  wral 2306  wrex 2307  c0 3224   class class class wbr 3764  suc csuc 4102  ωcom 4313  cen 6219
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-br 3765  df-opab 3819  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-er 6106  df-en 6222
This theorem is referenced by:  findcard2  6346  findcard2s  6347
  Copyright terms: Public domain W3C validator