ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oeiv GIF version

Theorem oeiv 6036
Description: Value of ordinal exponentiation. (Contributed by Jim Kingdon, 9-Jul-2019.)
Assertion
Ref Expression
oeiv ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝑜 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem oeiv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 6008 . . 3 1𝑜 ∈ On
2 vex 2560 . . . . . . 7 𝑥 ∈ V
3 omexg 6031 . . . . . . 7 ((𝑥 ∈ V ∧ 𝐴 ∈ On) → (𝑥 ·𝑜 𝐴) ∈ V)
42, 3mpan 400 . . . . . 6 (𝐴 ∈ On → (𝑥 ·𝑜 𝐴) ∈ V)
54ralrimivw 2393 . . . . 5 (𝐴 ∈ On → ∀𝑥 ∈ V (𝑥 ·𝑜 𝐴) ∈ V)
6 eqid 2040 . . . . . 6 (𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)) = (𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴))
76fnmpt 5025 . . . . 5 (∀𝑥 ∈ V (𝑥 ·𝑜 𝐴) ∈ V → (𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)) Fn V)
85, 7syl 14 . . . 4 (𝐴 ∈ On → (𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)) Fn V)
9 rdgexggg 5964 . . . 4 (((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)) Fn V ∧ 1𝑜 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∈ V)
108, 9syl3an1 1168 . . 3 ((𝐴 ∈ On ∧ 1𝑜 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∈ V)
111, 10mp3an2 1220 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∈ V)
12 oveq2 5520 . . . . . 6 (𝑦 = 𝐴 → (𝑥 ·𝑜 𝑦) = (𝑥 ·𝑜 𝐴))
1312mpteq2dv 3848 . . . . 5 (𝑦 = 𝐴 → (𝑥 ∈ V ↦ (𝑥 ·𝑜 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)))
14 rdgeq1 5958 . . . . 5 ((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)) → rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝑦)), 1𝑜) = rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜))
1513, 14syl 14 . . . 4 (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝑦)), 1𝑜) = rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜))
1615fveq1d 5180 . . 3 (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝑦)), 1𝑜)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝑧))
17 fveq2 5178 . . 3 (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵))
18 df-oexpi 6007 . . 3 𝑜 = (𝑦 ∈ On, 𝑧 ∈ On ↦ (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝑦)), 1𝑜)‘𝑧))
1916, 17, 18ovmpt2g 5635 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∈ V) → (𝐴𝑜 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵))
2011, 19mpd3an3 1233 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝑜 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  wral 2306  Vcvv 2557  cmpt 3818  Oncon0 4100   Fn wfn 4897  cfv 4902  (class class class)co 5512  reccrdg 5956  1𝑜c1o 5994   ·𝑜 comu 5999  𝑜 coei 6000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-oexpi 6007
This theorem is referenced by:  oei0  6039  oeicl  6042
  Copyright terms: Public domain W3C validator