Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2dv GIF version

Theorem mpteq2dv 3848
 Description: An equality inference for the maps to notation. (Contributed by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
mpteq2dv.1 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
mpteq2dv (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem mpteq2dv
StepHypRef Expression
1 mpteq2dv.1 . . 3 (𝜑𝐵 = 𝐶)
21adantr 261 . 2 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
32mpteq2dva 3847 1 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1243   ∈ wcel 1393   ↦ cmpt 3818 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-ral 2311  df-opab 3819  df-mpt 3820 This theorem is referenced by:  ofeq  5714  rdgeq1  5958  rdgeq2  5959  omv  6035  oeiv  6036
 Copyright terms: Public domain W3C validator