Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2dv Structured version   GIF version

Theorem mpteq2dv 3839
 Description: An equality inference for the maps to notation. (Contributed by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
mpteq2dv.1 (φB = 𝐶)
Assertion
Ref Expression
mpteq2dv (φ → (x AB) = (x A𝐶))
Distinct variable group:   φ,x
Allowed substitution hints:   A(x)   B(x)   𝐶(x)

Proof of Theorem mpteq2dv
StepHypRef Expression
1 mpteq2dv.1 . . 3 (φB = 𝐶)
21adantr 261 . 2 ((φ x A) → B = 𝐶)
32mpteq2dva 3838 1 (φ → (x AB) = (x A𝐶))
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1242   ∈ wcel 1390   ↦ cmpt 3809 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-ral 2305  df-opab 3810  df-mpt 3811 This theorem is referenced by:  ofeq  5656  rdgeq1  5898  rdgeq2  5899  omv  5974  oeiv  5975
 Copyright terms: Public domain W3C validator