Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgeq1 Structured version   GIF version

Theorem rdgeq1 5879
 Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
rdgeq1 (𝐹 = 𝐺 → rec(𝐹, A) = rec(𝐺, A))

Proof of Theorem rdgeq1
Dummy variables x g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5102 . . . . . 6 (𝐹 = 𝐺 → (𝐹‘(gx)) = (𝐺‘(gx)))
21iuneq2d 3656 . . . . 5 (𝐹 = 𝐺 x dom g(𝐹‘(gx)) = x dom g(𝐺‘(gx)))
32uneq2d 3074 . . . 4 (𝐹 = 𝐺 → (A x dom g(𝐹‘(gx))) = (A x dom g(𝐺‘(gx))))
43mpteq2dv 3822 . . 3 (𝐹 = 𝐺 → (g V ↦ (A x dom g(𝐹‘(gx)))) = (g V ↦ (A x dom g(𝐺‘(gx)))))
5 recseq 5843 . . 3 ((g V ↦ (A x dom g(𝐹‘(gx)))) = (g V ↦ (A x dom g(𝐺‘(gx)))) → recs((g V ↦ (A x dom g(𝐹‘(gx))))) = recs((g V ↦ (A x dom g(𝐺‘(gx))))))
64, 5syl 14 . 2 (𝐹 = 𝐺 → recs((g V ↦ (A x dom g(𝐹‘(gx))))) = recs((g V ↦ (A x dom g(𝐺‘(gx))))))
7 df-irdg 5878 . 2 rec(𝐹, A) = recs((g V ↦ (A x dom g(𝐹‘(gx)))))
8 df-irdg 5878 . 2 rec(𝐺, A) = recs((g V ↦ (A x dom g(𝐺‘(gx)))))
96, 7, 83eqtr4g 2079 1 (𝐹 = 𝐺 → rec(𝐹, A) = rec(𝐺, A))
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1228  Vcvv 2535   ∪ cun 2892  ∪ ciun 3631   ↦ cmpt 3792  dom cdm 4272  ‘cfv 4829  recscrecs 5841  reccrdg 5877 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004 This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-ral 2289  df-rex 2290  df-v 2537  df-un 2899  df-in 2901  df-ss 2908  df-uni 3555  df-iun 3633  df-br 3739  df-opab 3793  df-mpt 3794  df-iota 4794  df-fv 4837  df-recs 5842  df-irdg 5878 This theorem is referenced by:  omv  5950  oeiv  5951
 Copyright terms: Public domain W3C validator