ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1o2ndf1 GIF version

Theorem f1o2ndf1 5849
Description: The 2nd (second member of an ordered pair) function restricted to a one-to-one function 𝐹 is a one-to-one function of 𝐹 onto the range of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
Assertion
Ref Expression
f1o2ndf1 (𝐹:𝐴1-1𝐵 → (2nd𝐹):𝐹1-1-onto→ran 𝐹)

Proof of Theorem f1o2ndf1
Dummy variables 𝑎 𝑏 𝑣 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1f 5092 . . 3 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 fo2ndf 5848 . . 3 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹onto→ran 𝐹)
31, 2syl 14 . 2 (𝐹:𝐴1-1𝐵 → (2nd𝐹):𝐹onto→ran 𝐹)
4 f2ndf 5847 . . . . 5 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹𝐵)
51, 4syl 14 . . . 4 (𝐹:𝐴1-1𝐵 → (2nd𝐹):𝐹𝐵)
6 fssxp 5058 . . . . . . 7 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
71, 6syl 14 . . . . . 6 (𝐹:𝐴1-1𝐵𝐹 ⊆ (𝐴 × 𝐵))
8 ssel2 2940 . . . . . . . . . . 11 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ 𝑥𝐹) → 𝑥 ∈ (𝐴 × 𝐵))
9 elxp2 4363 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 × 𝐵) ↔ ∃𝑎𝐴𝑣𝐵 𝑥 = ⟨𝑎, 𝑣⟩)
108, 9sylib 127 . . . . . . . . . 10 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ 𝑥𝐹) → ∃𝑎𝐴𝑣𝐵 𝑥 = ⟨𝑎, 𝑣⟩)
11 ssel2 2940 . . . . . . . . . . 11 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ 𝑦𝐹) → 𝑦 ∈ (𝐴 × 𝐵))
12 elxp2 4363 . . . . . . . . . . 11 (𝑦 ∈ (𝐴 × 𝐵) ↔ ∃𝑏𝐴𝑤𝐵 𝑦 = ⟨𝑏, 𝑤⟩)
1311, 12sylib 127 . . . . . . . . . 10 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ 𝑦𝐹) → ∃𝑏𝐴𝑤𝐵 𝑦 = ⟨𝑏, 𝑤⟩)
1410, 13anim12dan 532 . . . . . . . . 9 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥𝐹𝑦𝐹)) → (∃𝑎𝐴𝑣𝐵 𝑥 = ⟨𝑎, 𝑣⟩ ∧ ∃𝑏𝐴𝑤𝐵 𝑦 = ⟨𝑏, 𝑤⟩))
15 fvres 5198 . . . . . . . . . . . . . . . . . . . . . . . . 25 (⟨𝑎, 𝑣⟩ ∈ 𝐹 → ((2nd𝐹)‘⟨𝑎, 𝑣⟩) = (2nd ‘⟨𝑎, 𝑣⟩))
1615adantr 261 . . . . . . . . . . . . . . . . . . . . . . . 24 ((⟨𝑎, 𝑣⟩ ∈ 𝐹 ∧ ⟨𝑏, 𝑤⟩ ∈ 𝐹) → ((2nd𝐹)‘⟨𝑎, 𝑣⟩) = (2nd ‘⟨𝑎, 𝑣⟩))
1716adantr 261 . . . . . . . . . . . . . . . . . . . . . . 23 (((⟨𝑎, 𝑣⟩ ∈ 𝐹 ∧ ⟨𝑏, 𝑤⟩ ∈ 𝐹) ∧ ((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵))) → ((2nd𝐹)‘⟨𝑎, 𝑣⟩) = (2nd ‘⟨𝑎, 𝑣⟩))
18 fvres 5198 . . . . . . . . . . . . . . . . . . . . . . . 24 (⟨𝑏, 𝑤⟩ ∈ 𝐹 → ((2nd𝐹)‘⟨𝑏, 𝑤⟩) = (2nd ‘⟨𝑏, 𝑤⟩))
1918ad2antlr 458 . . . . . . . . . . . . . . . . . . . . . . 23 (((⟨𝑎, 𝑣⟩ ∈ 𝐹 ∧ ⟨𝑏, 𝑤⟩ ∈ 𝐹) ∧ ((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵))) → ((2nd𝐹)‘⟨𝑏, 𝑤⟩) = (2nd ‘⟨𝑏, 𝑤⟩))
2017, 19eqeq12d 2054 . . . . . . . . . . . . . . . . . . . . . 22 (((⟨𝑎, 𝑣⟩ ∈ 𝐹 ∧ ⟨𝑏, 𝑤⟩ ∈ 𝐹) ∧ ((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵))) → (((2nd𝐹)‘⟨𝑎, 𝑣⟩) = ((2nd𝐹)‘⟨𝑏, 𝑤⟩) ↔ (2nd ‘⟨𝑎, 𝑣⟩) = (2nd ‘⟨𝑏, 𝑤⟩)))
21 vex 2560 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑎 ∈ V
22 vex 2560 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑣 ∈ V
2321, 22op2nd 5774 . . . . . . . . . . . . . . . . . . . . . . . 24 (2nd ‘⟨𝑎, 𝑣⟩) = 𝑣
24 vex 2560 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑏 ∈ V
25 vex 2560 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑤 ∈ V
2624, 25op2nd 5774 . . . . . . . . . . . . . . . . . . . . . . . 24 (2nd ‘⟨𝑏, 𝑤⟩) = 𝑤
2723, 26eqeq12i 2053 . . . . . . . . . . . . . . . . . . . . . . 23 ((2nd ‘⟨𝑎, 𝑣⟩) = (2nd ‘⟨𝑏, 𝑤⟩) ↔ 𝑣 = 𝑤)
28 f1fun 5094 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
29 funopfv 5213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Fun 𝐹 → (⟨𝑎, 𝑣⟩ ∈ 𝐹 → (𝐹𝑎) = 𝑣))
30 funopfv 5213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Fun 𝐹 → (⟨𝑏, 𝑤⟩ ∈ 𝐹 → (𝐹𝑏) = 𝑤))
3129, 30anim12d 318 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Fun 𝐹 → ((⟨𝑎, 𝑣⟩ ∈ 𝐹 ∧ ⟨𝑏, 𝑤⟩ ∈ 𝐹) → ((𝐹𝑎) = 𝑣 ∧ (𝐹𝑏) = 𝑤)))
3228, 31syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹:𝐴1-1𝐵 → ((⟨𝑎, 𝑣⟩ ∈ 𝐹 ∧ ⟨𝑏, 𝑤⟩ ∈ 𝐹) → ((𝐹𝑎) = 𝑣 ∧ (𝐹𝑏) = 𝑤)))
33 eqcom 2042 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐹𝑎) = 𝑣𝑣 = (𝐹𝑎))
3433biimpi 113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐹𝑎) = 𝑣𝑣 = (𝐹𝑎))
35 eqcom 2042 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐹𝑏) = 𝑤𝑤 = (𝐹𝑏))
3635biimpi 113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐹𝑏) = 𝑤𝑤 = (𝐹𝑏))
3734, 36eqeqan12d 2055 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐹𝑎) = 𝑣 ∧ (𝐹𝑏) = 𝑤) → (𝑣 = 𝑤 ↔ (𝐹𝑎) = (𝐹𝑏)))
38 simpl 102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎𝐴𝑣𝐵) → 𝑎𝐴)
39 simpl 102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑏𝐴𝑤𝐵) → 𝑏𝐴)
4038, 39anim12i 321 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵)) → (𝑎𝐴𝑏𝐴))
41 f1veqaeq 5408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐹:𝐴1-1𝐵 ∧ (𝑎𝐴𝑏𝐴)) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
4240, 41sylan2 270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐹:𝐴1-1𝐵 ∧ ((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵))) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
43 opeq12 3551 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎 = 𝑏𝑣 = 𝑤) → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩)
4443ex 108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑎 = 𝑏 → (𝑣 = 𝑤 → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩))
4542, 44syl6 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐹:𝐴1-1𝐵 ∧ ((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵))) → ((𝐹𝑎) = (𝐹𝑏) → (𝑣 = 𝑤 → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩)))
4645com23 72 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐹:𝐴1-1𝐵 ∧ ((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵))) → (𝑣 = 𝑤 → ((𝐹𝑎) = (𝐹𝑏) → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩)))
4746ex 108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝐹:𝐴1-1𝐵 → (((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵)) → (𝑣 = 𝑤 → ((𝐹𝑎) = (𝐹𝑏) → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩))))
4847com14 82 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐹𝑎) = (𝐹𝑏) → (((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵)) → (𝑣 = 𝑤 → (𝐹:𝐴1-1𝐵 → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩))))
4937, 48syl6bi 152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐹𝑎) = 𝑣 ∧ (𝐹𝑏) = 𝑤) → (𝑣 = 𝑤 → (((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵)) → (𝑣 = 𝑤 → (𝐹:𝐴1-1𝐵 → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩)))))
5049com14 82 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑣 = 𝑤 → (𝑣 = 𝑤 → (((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵)) → (((𝐹𝑎) = 𝑣 ∧ (𝐹𝑏) = 𝑤) → (𝐹:𝐴1-1𝐵 → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩)))))
5150pm2.43i 43 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑣 = 𝑤 → (((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵)) → (((𝐹𝑎) = 𝑣 ∧ (𝐹𝑏) = 𝑤) → (𝐹:𝐴1-1𝐵 → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩))))
5251com14 82 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐹:𝐴1-1𝐵 → (((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵)) → (((𝐹𝑎) = 𝑣 ∧ (𝐹𝑏) = 𝑤) → (𝑣 = 𝑤 → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩))))
5352com23 72 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹:𝐴1-1𝐵 → (((𝐹𝑎) = 𝑣 ∧ (𝐹𝑏) = 𝑤) → (((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵)) → (𝑣 = 𝑤 → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩))))
5432, 53syld 40 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹:𝐴1-1𝐵 → ((⟨𝑎, 𝑣⟩ ∈ 𝐹 ∧ ⟨𝑏, 𝑤⟩ ∈ 𝐹) → (((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵)) → (𝑣 = 𝑤 → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩))))
5554com13 74 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵)) → ((⟨𝑎, 𝑣⟩ ∈ 𝐹 ∧ ⟨𝑏, 𝑤⟩ ∈ 𝐹) → (𝐹:𝐴1-1𝐵 → (𝑣 = 𝑤 → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩))))
5655impcom 116 . . . . . . . . . . . . . . . . . . . . . . . 24 (((⟨𝑎, 𝑣⟩ ∈ 𝐹 ∧ ⟨𝑏, 𝑤⟩ ∈ 𝐹) ∧ ((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵))) → (𝐹:𝐴1-1𝐵 → (𝑣 = 𝑤 → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩)))
5756com23 72 . . . . . . . . . . . . . . . . . . . . . . 23 (((⟨𝑎, 𝑣⟩ ∈ 𝐹 ∧ ⟨𝑏, 𝑤⟩ ∈ 𝐹) ∧ ((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵))) → (𝑣 = 𝑤 → (𝐹:𝐴1-1𝐵 → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩)))
5827, 57syl5bi 141 . . . . . . . . . . . . . . . . . . . . . 22 (((⟨𝑎, 𝑣⟩ ∈ 𝐹 ∧ ⟨𝑏, 𝑤⟩ ∈ 𝐹) ∧ ((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵))) → ((2nd ‘⟨𝑎, 𝑣⟩) = (2nd ‘⟨𝑏, 𝑤⟩) → (𝐹:𝐴1-1𝐵 → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩)))
5920, 58sylbid 139 . . . . . . . . . . . . . . . . . . . . 21 (((⟨𝑎, 𝑣⟩ ∈ 𝐹 ∧ ⟨𝑏, 𝑤⟩ ∈ 𝐹) ∧ ((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵))) → (((2nd𝐹)‘⟨𝑎, 𝑣⟩) = ((2nd𝐹)‘⟨𝑏, 𝑤⟩) → (𝐹:𝐴1-1𝐵 → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩)))
6059com23 72 . . . . . . . . . . . . . . . . . . . 20 (((⟨𝑎, 𝑣⟩ ∈ 𝐹 ∧ ⟨𝑏, 𝑤⟩ ∈ 𝐹) ∧ ((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵))) → (𝐹:𝐴1-1𝐵 → (((2nd𝐹)‘⟨𝑎, 𝑣⟩) = ((2nd𝐹)‘⟨𝑏, 𝑤⟩) → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩)))
6160ex 108 . . . . . . . . . . . . . . . . . . 19 ((⟨𝑎, 𝑣⟩ ∈ 𝐹 ∧ ⟨𝑏, 𝑤⟩ ∈ 𝐹) → (((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵)) → (𝐹:𝐴1-1𝐵 → (((2nd𝐹)‘⟨𝑎, 𝑣⟩) = ((2nd𝐹)‘⟨𝑏, 𝑤⟩) → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩))))
6261adantl 262 . . . . . . . . . . . . . . . . . 18 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (⟨𝑎, 𝑣⟩ ∈ 𝐹 ∧ ⟨𝑏, 𝑤⟩ ∈ 𝐹)) → (((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵)) → (𝐹:𝐴1-1𝐵 → (((2nd𝐹)‘⟨𝑎, 𝑣⟩) = ((2nd𝐹)‘⟨𝑏, 𝑤⟩) → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩))))
6362com12 27 . . . . . . . . . . . . . . . . 17 (((𝑎𝐴𝑣𝐵) ∧ (𝑏𝐴𝑤𝐵)) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (⟨𝑎, 𝑣⟩ ∈ 𝐹 ∧ ⟨𝑏, 𝑤⟩ ∈ 𝐹)) → (𝐹:𝐴1-1𝐵 → (((2nd𝐹)‘⟨𝑎, 𝑣⟩) = ((2nd𝐹)‘⟨𝑏, 𝑤⟩) → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩))))
6463adantlr 446 . . . . . . . . . . . . . . . 16 ((((𝑎𝐴𝑣𝐵) ∧ 𝑥 = ⟨𝑎, 𝑣⟩) ∧ (𝑏𝐴𝑤𝐵)) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (⟨𝑎, 𝑣⟩ ∈ 𝐹 ∧ ⟨𝑏, 𝑤⟩ ∈ 𝐹)) → (𝐹:𝐴1-1𝐵 → (((2nd𝐹)‘⟨𝑎, 𝑣⟩) = ((2nd𝐹)‘⟨𝑏, 𝑤⟩) → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩))))
6564adantr 261 . . . . . . . . . . . . . . 15 (((((𝑎𝐴𝑣𝐵) ∧ 𝑥 = ⟨𝑎, 𝑣⟩) ∧ (𝑏𝐴𝑤𝐵)) ∧ 𝑦 = ⟨𝑏, 𝑤⟩) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (⟨𝑎, 𝑣⟩ ∈ 𝐹 ∧ ⟨𝑏, 𝑤⟩ ∈ 𝐹)) → (𝐹:𝐴1-1𝐵 → (((2nd𝐹)‘⟨𝑎, 𝑣⟩) = ((2nd𝐹)‘⟨𝑏, 𝑤⟩) → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩))))
66 eleq1 2100 . . . . . . . . . . . . . . . . . 18 (𝑥 = ⟨𝑎, 𝑣⟩ → (𝑥𝐹 ↔ ⟨𝑎, 𝑣⟩ ∈ 𝐹))
6766ad2antlr 458 . . . . . . . . . . . . . . . . 17 ((((𝑎𝐴𝑣𝐵) ∧ 𝑥 = ⟨𝑎, 𝑣⟩) ∧ (𝑏𝐴𝑤𝐵)) → (𝑥𝐹 ↔ ⟨𝑎, 𝑣⟩ ∈ 𝐹))
68 eleq1 2100 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨𝑏, 𝑤⟩ → (𝑦𝐹 ↔ ⟨𝑏, 𝑤⟩ ∈ 𝐹))
6967, 68bi2anan9 538 . . . . . . . . . . . . . . . 16 (((((𝑎𝐴𝑣𝐵) ∧ 𝑥 = ⟨𝑎, 𝑣⟩) ∧ (𝑏𝐴𝑤𝐵)) ∧ 𝑦 = ⟨𝑏, 𝑤⟩) → ((𝑥𝐹𝑦𝐹) ↔ (⟨𝑎, 𝑣⟩ ∈ 𝐹 ∧ ⟨𝑏, 𝑤⟩ ∈ 𝐹)))
7069anbi2d 437 . . . . . . . . . . . . . . 15 (((((𝑎𝐴𝑣𝐵) ∧ 𝑥 = ⟨𝑎, 𝑣⟩) ∧ (𝑏𝐴𝑤𝐵)) ∧ 𝑦 = ⟨𝑏, 𝑤⟩) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥𝐹𝑦𝐹)) ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ (⟨𝑎, 𝑣⟩ ∈ 𝐹 ∧ ⟨𝑏, 𝑤⟩ ∈ 𝐹))))
71 fveq2 5178 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ⟨𝑎, 𝑣⟩ → ((2nd𝐹)‘𝑥) = ((2nd𝐹)‘⟨𝑎, 𝑣⟩))
7271ad2antlr 458 . . . . . . . . . . . . . . . . . 18 ((((𝑎𝐴𝑣𝐵) ∧ 𝑥 = ⟨𝑎, 𝑣⟩) ∧ (𝑏𝐴𝑤𝐵)) → ((2nd𝐹)‘𝑥) = ((2nd𝐹)‘⟨𝑎, 𝑣⟩))
73 fveq2 5178 . . . . . . . . . . . . . . . . . 18 (𝑦 = ⟨𝑏, 𝑤⟩ → ((2nd𝐹)‘𝑦) = ((2nd𝐹)‘⟨𝑏, 𝑤⟩))
7472, 73eqeqan12d 2055 . . . . . . . . . . . . . . . . 17 (((((𝑎𝐴𝑣𝐵) ∧ 𝑥 = ⟨𝑎, 𝑣⟩) ∧ (𝑏𝐴𝑤𝐵)) ∧ 𝑦 = ⟨𝑏, 𝑤⟩) → (((2nd𝐹)‘𝑥) = ((2nd𝐹)‘𝑦) ↔ ((2nd𝐹)‘⟨𝑎, 𝑣⟩) = ((2nd𝐹)‘⟨𝑏, 𝑤⟩)))
75 simpllr 486 . . . . . . . . . . . . . . . . . 18 (((((𝑎𝐴𝑣𝐵) ∧ 𝑥 = ⟨𝑎, 𝑣⟩) ∧ (𝑏𝐴𝑤𝐵)) ∧ 𝑦 = ⟨𝑏, 𝑤⟩) → 𝑥 = ⟨𝑎, 𝑣⟩)
76 simpr 103 . . . . . . . . . . . . . . . . . 18 (((((𝑎𝐴𝑣𝐵) ∧ 𝑥 = ⟨𝑎, 𝑣⟩) ∧ (𝑏𝐴𝑤𝐵)) ∧ 𝑦 = ⟨𝑏, 𝑤⟩) → 𝑦 = ⟨𝑏, 𝑤⟩)
7775, 76eqeq12d 2054 . . . . . . . . . . . . . . . . 17 (((((𝑎𝐴𝑣𝐵) ∧ 𝑥 = ⟨𝑎, 𝑣⟩) ∧ (𝑏𝐴𝑤𝐵)) ∧ 𝑦 = ⟨𝑏, 𝑤⟩) → (𝑥 = 𝑦 ↔ ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩))
7874, 77imbi12d 223 . . . . . . . . . . . . . . . 16 (((((𝑎𝐴𝑣𝐵) ∧ 𝑥 = ⟨𝑎, 𝑣⟩) ∧ (𝑏𝐴𝑤𝐵)) ∧ 𝑦 = ⟨𝑏, 𝑤⟩) → ((((2nd𝐹)‘𝑥) = ((2nd𝐹)‘𝑦) → 𝑥 = 𝑦) ↔ (((2nd𝐹)‘⟨𝑎, 𝑣⟩) = ((2nd𝐹)‘⟨𝑏, 𝑤⟩) → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩)))
7978imbi2d 219 . . . . . . . . . . . . . . 15 (((((𝑎𝐴𝑣𝐵) ∧ 𝑥 = ⟨𝑎, 𝑣⟩) ∧ (𝑏𝐴𝑤𝐵)) ∧ 𝑦 = ⟨𝑏, 𝑤⟩) → ((𝐹:𝐴1-1𝐵 → (((2nd𝐹)‘𝑥) = ((2nd𝐹)‘𝑦) → 𝑥 = 𝑦)) ↔ (𝐹:𝐴1-1𝐵 → (((2nd𝐹)‘⟨𝑎, 𝑣⟩) = ((2nd𝐹)‘⟨𝑏, 𝑤⟩) → ⟨𝑎, 𝑣⟩ = ⟨𝑏, 𝑤⟩))))
8065, 70, 793imtr4d 192 . . . . . . . . . . . . . 14 (((((𝑎𝐴𝑣𝐵) ∧ 𝑥 = ⟨𝑎, 𝑣⟩) ∧ (𝑏𝐴𝑤𝐵)) ∧ 𝑦 = ⟨𝑏, 𝑤⟩) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥𝐹𝑦𝐹)) → (𝐹:𝐴1-1𝐵 → (((2nd𝐹)‘𝑥) = ((2nd𝐹)‘𝑦) → 𝑥 = 𝑦))))
8180ex 108 . . . . . . . . . . . . 13 ((((𝑎𝐴𝑣𝐵) ∧ 𝑥 = ⟨𝑎, 𝑣⟩) ∧ (𝑏𝐴𝑤𝐵)) → (𝑦 = ⟨𝑏, 𝑤⟩ → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥𝐹𝑦𝐹)) → (𝐹:𝐴1-1𝐵 → (((2nd𝐹)‘𝑥) = ((2nd𝐹)‘𝑦) → 𝑥 = 𝑦)))))
8281rexlimdvva 2440 . . . . . . . . . . . 12 (((𝑎𝐴𝑣𝐵) ∧ 𝑥 = ⟨𝑎, 𝑣⟩) → (∃𝑏𝐴𝑤𝐵 𝑦 = ⟨𝑏, 𝑤⟩ → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥𝐹𝑦𝐹)) → (𝐹:𝐴1-1𝐵 → (((2nd𝐹)‘𝑥) = ((2nd𝐹)‘𝑦) → 𝑥 = 𝑦)))))
8382ex 108 . . . . . . . . . . 11 ((𝑎𝐴𝑣𝐵) → (𝑥 = ⟨𝑎, 𝑣⟩ → (∃𝑏𝐴𝑤𝐵 𝑦 = ⟨𝑏, 𝑤⟩ → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥𝐹𝑦𝐹)) → (𝐹:𝐴1-1𝐵 → (((2nd𝐹)‘𝑥) = ((2nd𝐹)‘𝑦) → 𝑥 = 𝑦))))))
8483rexlimivv 2438 . . . . . . . . . 10 (∃𝑎𝐴𝑣𝐵 𝑥 = ⟨𝑎, 𝑣⟩ → (∃𝑏𝐴𝑤𝐵 𝑦 = ⟨𝑏, 𝑤⟩ → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥𝐹𝑦𝐹)) → (𝐹:𝐴1-1𝐵 → (((2nd𝐹)‘𝑥) = ((2nd𝐹)‘𝑦) → 𝑥 = 𝑦)))))
8584imp 115 . . . . . . . . 9 ((∃𝑎𝐴𝑣𝐵 𝑥 = ⟨𝑎, 𝑣⟩ ∧ ∃𝑏𝐴𝑤𝐵 𝑦 = ⟨𝑏, 𝑤⟩) → ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥𝐹𝑦𝐹)) → (𝐹:𝐴1-1𝐵 → (((2nd𝐹)‘𝑥) = ((2nd𝐹)‘𝑦) → 𝑥 = 𝑦))))
8614, 85mpcom 32 . . . . . . . 8 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥𝐹𝑦𝐹)) → (𝐹:𝐴1-1𝐵 → (((2nd𝐹)‘𝑥) = ((2nd𝐹)‘𝑦) → 𝑥 = 𝑦)))
8786ex 108 . . . . . . 7 (𝐹 ⊆ (𝐴 × 𝐵) → ((𝑥𝐹𝑦𝐹) → (𝐹:𝐴1-1𝐵 → (((2nd𝐹)‘𝑥) = ((2nd𝐹)‘𝑦) → 𝑥 = 𝑦))))
8887com23 72 . . . . . 6 (𝐹 ⊆ (𝐴 × 𝐵) → (𝐹:𝐴1-1𝐵 → ((𝑥𝐹𝑦𝐹) → (((2nd𝐹)‘𝑥) = ((2nd𝐹)‘𝑦) → 𝑥 = 𝑦))))
897, 88mpcom 32 . . . . 5 (𝐹:𝐴1-1𝐵 → ((𝑥𝐹𝑦𝐹) → (((2nd𝐹)‘𝑥) = ((2nd𝐹)‘𝑦) → 𝑥 = 𝑦)))
9089ralrimivv 2400 . . . 4 (𝐹:𝐴1-1𝐵 → ∀𝑥𝐹𝑦𝐹 (((2nd𝐹)‘𝑥) = ((2nd𝐹)‘𝑦) → 𝑥 = 𝑦))
91 dff13 5407 . . . 4 ((2nd𝐹):𝐹1-1𝐵 ↔ ((2nd𝐹):𝐹𝐵 ∧ ∀𝑥𝐹𝑦𝐹 (((2nd𝐹)‘𝑥) = ((2nd𝐹)‘𝑦) → 𝑥 = 𝑦)))
925, 90, 91sylanbrc 394 . . 3 (𝐹:𝐴1-1𝐵 → (2nd𝐹):𝐹1-1𝐵)
93 df-f1 4907 . . . 4 ((2nd𝐹):𝐹1-1𝐵 ↔ ((2nd𝐹):𝐹𝐵 ∧ Fun (2nd𝐹)))
9493simprbi 260 . . 3 ((2nd𝐹):𝐹1-1𝐵 → Fun (2nd𝐹))
9592, 94syl 14 . 2 (𝐹:𝐴1-1𝐵 → Fun (2nd𝐹))
96 dff1o3 5132 . 2 ((2nd𝐹):𝐹1-1-onto→ran 𝐹 ↔ ((2nd𝐹):𝐹onto→ran 𝐹 ∧ Fun (2nd𝐹)))
973, 95, 96sylanbrc 394 1 (𝐹:𝐴1-1𝐵 → (2nd𝐹):𝐹1-1-onto→ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wcel 1393  wral 2306  wrex 2307  wss 2917  cop 3378   × cxp 4343  ccnv 4344  ran crn 4346  cres 4347  Fun wfun 4896  wf 4898  1-1wf1 4899  ontowfo 4900  1-1-ontowf1o 4901  cfv 4902  2nd c2nd 5766
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-2nd 5768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator