 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  f2ndf GIF version

Theorem f2ndf 5847
 Description: The 2nd (second member of an ordered pair) function restricted to a function 𝐹 is a function of 𝐹 into the codomain of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
Assertion
Ref Expression
f2ndf (𝐹:𝐴𝐵 → (2nd𝐹):𝐹𝐵)

Proof of Theorem f2ndf
StepHypRef Expression
1 f2ndres 5787 . . 3 (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵
2 fssxp 5058 . . 3 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
3 fssres 5066 . . 3 (((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵𝐹 ⊆ (𝐴 × 𝐵)) → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹𝐵)
41, 2, 3sylancr 393 . 2 (𝐹:𝐴𝐵 → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹𝐵)
5 resabs1 4640 . . . . 5 (𝐹 ⊆ (𝐴 × 𝐵) → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹) = (2nd𝐹))
62, 5syl 14 . . . 4 (𝐹:𝐴𝐵 → ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹) = (2nd𝐹))
76eqcomd 2045 . . 3 (𝐹:𝐴𝐵 → (2nd𝐹) = ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹))
87feq1d 5034 . 2 (𝐹:𝐴𝐵 → ((2nd𝐹):𝐹𝐵 ↔ ((2nd ↾ (𝐴 × 𝐵)) ↾ 𝐹):𝐹𝐵))
94, 8mpbird 156 1 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹𝐵)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1243   ⊆ wss 2917   × cxp 4343   ↾ cres 4347  ⟶wf 4898  2nd c2nd 5766 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fv 4910  df-2nd 5768 This theorem is referenced by:  fo2ndf  5848  f1o2ndf1  5849
 Copyright terms: Public domain W3C validator