ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo2ndf GIF version

Theorem fo2ndf 5848
Description: The 2nd (second member of an ordered pair) function restricted to a function 𝐹 is a function of 𝐹 onto the range of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
Assertion
Ref Expression
fo2ndf (𝐹:𝐴𝐵 → (2nd𝐹):𝐹onto→ran 𝐹)

Proof of Theorem fo2ndf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 5046 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 dffn3 5053 . . . 4 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
31, 2sylib 127 . . 3 (𝐹:𝐴𝐵𝐹:𝐴⟶ran 𝐹)
4 f2ndf 5847 . . 3 (𝐹:𝐴⟶ran 𝐹 → (2nd𝐹):𝐹⟶ran 𝐹)
53, 4syl 14 . 2 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹⟶ran 𝐹)
62, 4sylbi 114 . . . . 5 (𝐹 Fn 𝐴 → (2nd𝐹):𝐹⟶ran 𝐹)
71, 6syl 14 . . . 4 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹⟶ran 𝐹)
8 frn 5052 . . . 4 ((2nd𝐹):𝐹⟶ran 𝐹 → ran (2nd𝐹) ⊆ ran 𝐹)
97, 8syl 14 . . 3 (𝐹:𝐴𝐵 → ran (2nd𝐹) ⊆ ran 𝐹)
10 elrn2g 4525 . . . . . 6 (𝑦 ∈ ran 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐹))
1110ibi 165 . . . . 5 (𝑦 ∈ ran 𝐹 → ∃𝑥𝑥, 𝑦⟩ ∈ 𝐹)
12 fvres 5198 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ((2nd𝐹)‘⟨𝑥, 𝑦⟩) = (2nd ‘⟨𝑥, 𝑦⟩))
1312adantl 262 . . . . . . . . 9 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → ((2nd𝐹)‘⟨𝑥, 𝑦⟩) = (2nd ‘⟨𝑥, 𝑦⟩))
14 vex 2560 . . . . . . . . . 10 𝑥 ∈ V
15 vex 2560 . . . . . . . . . 10 𝑦 ∈ V
1614, 15op2nd 5774 . . . . . . . . 9 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
1713, 16syl6req 2089 . . . . . . . 8 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑦 = ((2nd𝐹)‘⟨𝑥, 𝑦⟩))
18 f2ndf 5847 . . . . . . . . . 10 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹𝐵)
19 ffn 5046 . . . . . . . . . 10 ((2nd𝐹):𝐹𝐵 → (2nd𝐹) Fn 𝐹)
2018, 19syl 14 . . . . . . . . 9 (𝐹:𝐴𝐵 → (2nd𝐹) Fn 𝐹)
21 fnfvelrn 5299 . . . . . . . . 9 (((2nd𝐹) Fn 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → ((2nd𝐹)‘⟨𝑥, 𝑦⟩) ∈ ran (2nd𝐹))
2220, 21sylan 267 . . . . . . . 8 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → ((2nd𝐹)‘⟨𝑥, 𝑦⟩) ∈ ran (2nd𝐹))
2317, 22eqeltrd 2114 . . . . . . 7 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑦 ∈ ran (2nd𝐹))
2423ex 108 . . . . . 6 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑦 ∈ ran (2nd𝐹)))
2524exlimdv 1700 . . . . 5 (𝐹:𝐴𝐵 → (∃𝑥𝑥, 𝑦⟩ ∈ 𝐹𝑦 ∈ ran (2nd𝐹)))
2611, 25syl5 28 . . . 4 (𝐹:𝐴𝐵 → (𝑦 ∈ ran 𝐹𝑦 ∈ ran (2nd𝐹)))
2726ssrdv 2951 . . 3 (𝐹:𝐴𝐵 → ran 𝐹 ⊆ ran (2nd𝐹))
289, 27eqssd 2962 . 2 (𝐹:𝐴𝐵 → ran (2nd𝐹) = ran 𝐹)
29 dffo2 5110 . 2 ((2nd𝐹):𝐹onto→ran 𝐹 ↔ ((2nd𝐹):𝐹⟶ran 𝐹 ∧ ran (2nd𝐹) = ran 𝐹))
305, 28, 29sylanbrc 394 1 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹onto→ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wex 1381  wcel 1393  wss 2917  cop 3378  ran crn 4346  cres 4347   Fn wfn 4897  wf 4898  ontowfo 4900  cfv 4902  2nd c2nd 5766
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fo 4908  df-fv 4910  df-2nd 5768
This theorem is referenced by:  f1o2ndf1  5849
  Copyright terms: Public domain W3C validator