![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeqan12d | GIF version |
Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
eqeqan12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqeqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
eqeqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeqan12d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqeqan12d.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | eqeq12 2052 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | |
4 | 1, 2, 3 | syl2an 273 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 = wceq 1243 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-4 1400 ax-17 1419 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 |
This theorem is referenced by: eqeqan12rd 2056 eqfnfv 5265 eqfnfv2 5266 f1mpt 5410 xpopth 5802 f1o2ndf1 5849 ecopoveq 6201 xpdom2 6305 addpipqqs 6468 enq0enq 6529 enq0sym 6530 enq0tr 6532 enq0breq 6534 preqlu 6570 cnegexlem1 7186 neg11 7262 subeqrev 7374 cnref1o 8582 xneg11 8747 sq11 9326 cj11 9505 sqrt11 9637 sqabs 9678 recan 9705 |
Copyright terms: Public domain | W3C validator |