![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elznn0 | GIF version |
Description: Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
elznn0 | ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 8023 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
2 | elnn0 7959 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
3 | 2 | a1i 9 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))) |
4 | elnn0 7959 | . . . . . 6 ⊢ (-𝑁 ∈ ℕ0 ↔ (-𝑁 ∈ ℕ ∨ -𝑁 = 0)) | |
5 | recn 6812 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℝ → 𝑁 ∈ ℂ) | |
6 | 0cn 6817 | . . . . . . . . 9 ⊢ 0 ∈ ℂ | |
7 | negcon1 7059 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℂ ∧ 0 ∈ ℂ) → (-𝑁 = 0 ↔ -0 = 𝑁)) | |
8 | 5, 6, 7 | sylancl 392 | . . . . . . . 8 ⊢ (𝑁 ∈ ℝ → (-𝑁 = 0 ↔ -0 = 𝑁)) |
9 | neg0 7053 | . . . . . . . . . 10 ⊢ -0 = 0 | |
10 | 9 | eqeq1i 2044 | . . . . . . . . 9 ⊢ (-0 = 𝑁 ↔ 0 = 𝑁) |
11 | eqcom 2039 | . . . . . . . . 9 ⊢ (0 = 𝑁 ↔ 𝑁 = 0) | |
12 | 10, 11 | bitri 173 | . . . . . . . 8 ⊢ (-0 = 𝑁 ↔ 𝑁 = 0) |
13 | 8, 12 | syl6bb 185 | . . . . . . 7 ⊢ (𝑁 ∈ ℝ → (-𝑁 = 0 ↔ 𝑁 = 0)) |
14 | 13 | orbi2d 703 | . . . . . 6 ⊢ (𝑁 ∈ ℝ → ((-𝑁 ∈ ℕ ∨ -𝑁 = 0) ↔ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) |
15 | 4, 14 | syl5bb 181 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (-𝑁 ∈ ℕ0 ↔ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) |
16 | 3, 15 | orbi12d 706 | . . . 4 ⊢ (𝑁 ∈ ℝ → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0) ↔ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))) |
17 | 3orass 887 | . . . . 5 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 = 0 ∨ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
18 | orcom 646 | . . . . 5 ⊢ ((𝑁 = 0 ∨ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ ((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ∨ 𝑁 = 0)) | |
19 | orordir 690 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ∨ 𝑁 = 0) ↔ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) | |
20 | 17, 18, 19 | 3bitrri 196 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
21 | 16, 20 | syl6rbb 186 | . . 3 ⊢ (𝑁 ∈ ℝ → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) |
22 | 21 | pm5.32i 427 | . 2 ⊢ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) |
23 | 1, 22 | bitri 173 | 1 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 97 ↔ wb 98 ∨ wo 628 ∨ w3o 883 = wceq 1242 ∈ wcel 1390 ℂcc 6709 ℝcr 6710 0cc0 6711 -cneg 6980 ℕcn 7695 ℕ0cn0 7957 ℤcz 8021 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 ax-pow 3918 ax-pr 3935 ax-setind 4220 ax-resscn 6775 ax-1cn 6776 ax-icn 6778 ax-addcl 6779 ax-addrcl 6780 ax-mulcl 6781 ax-addcom 6783 ax-addass 6785 ax-distr 6787 ax-i2m1 6788 ax-0id 6791 ax-rnegex 6792 ax-cnre 6794 |
This theorem depends on definitions: df-bi 110 df-3or 885 df-3an 886 df-tru 1245 df-fal 1248 df-nf 1347 df-sb 1643 df-eu 1900 df-mo 1901 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ne 2203 df-ral 2305 df-rex 2306 df-reu 2307 df-rab 2309 df-v 2553 df-sbc 2759 df-dif 2914 df-un 2916 df-in 2918 df-ss 2925 df-pw 3353 df-sn 3373 df-pr 3374 df-op 3376 df-uni 3572 df-br 3756 df-opab 3810 df-id 4021 df-xp 4294 df-rel 4295 df-cnv 4296 df-co 4297 df-dm 4298 df-iota 4810 df-fun 4847 df-fv 4853 df-riota 5411 df-ov 5458 df-oprab 5459 df-mpt2 5460 df-sub 6981 df-neg 6982 df-n0 7958 df-z 8022 |
This theorem is referenced by: peano2z 8057 zmulcl 8073 elz2 8088 expnegzap 8943 expaddzaplem 8952 |
Copyright terms: Public domain | W3C validator |