 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpelvu GIF version

Theorem genpelvu 6611
 Description: Membership in upper cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 15-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpelvu ((𝐴P𝐵P) → (𝐶 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝐶 = (𝑔𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑔,,𝑤,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑔,,𝑤,𝑣   𝑥,𝐺,𝑦,𝑧,𝑔,,𝑤,𝑣   𝑔,𝐹   𝐶,𝑔,
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,)

Proof of Theorem genpelvu
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 genpelvl.1 . . . . . . 7 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
2 genpelvl.2 . . . . . . 7 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genipv 6607 . . . . . 6 ((𝐴P𝐵P) → (𝐴𝐹𝐵) = ⟨{𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)}, {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)}⟩)
43fveq2d 5182 . . . . 5 ((𝐴P𝐵P) → (2nd ‘(𝐴𝐹𝐵)) = (2nd ‘⟨{𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)}, {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)}⟩))
5 nqex 6461 . . . . . . 7 Q ∈ V
65rabex 3901 . . . . . 6 {𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)} ∈ V
75rabex 3901 . . . . . 6 {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)} ∈ V
86, 7op2nd 5774 . . . . 5 (2nd ‘⟨{𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)}, {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)}⟩) = {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)}
94, 8syl6eq 2088 . . . 4 ((𝐴P𝐵P) → (2nd ‘(𝐴𝐹𝐵)) = {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)})
109eleq2d 2107 . . 3 ((𝐴P𝐵P) → (𝐶 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ 𝐶 ∈ {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)}))
11 elrabi 2695 . . 3 (𝐶 ∈ {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)} → 𝐶Q)
1210, 11syl6bi 152 . 2 ((𝐴P𝐵P) → (𝐶 ∈ (2nd ‘(𝐴𝐹𝐵)) → 𝐶Q))
13 prop 6573 . . . . . . 7 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
14 elprnqu 6580 . . . . . . 7 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑔 ∈ (2nd𝐴)) → 𝑔Q)
1513, 14sylan 267 . . . . . 6 ((𝐴P𝑔 ∈ (2nd𝐴)) → 𝑔Q)
16 prop 6573 . . . . . . 7 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
17 elprnqu 6580 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∈ (2nd𝐵)) → Q)
1816, 17sylan 267 . . . . . 6 ((𝐵P ∈ (2nd𝐵)) → Q)
192caovcl 5655 . . . . . 6 ((𝑔QQ) → (𝑔𝐺) ∈ Q)
2015, 18, 19syl2an 273 . . . . 5 (((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) → (𝑔𝐺) ∈ Q)
2120an4s 522 . . . 4 (((𝐴P𝐵P) ∧ (𝑔 ∈ (2nd𝐴) ∧ ∈ (2nd𝐵))) → (𝑔𝐺) ∈ Q)
22 eleq1 2100 . . . 4 (𝐶 = (𝑔𝐺) → (𝐶Q ↔ (𝑔𝐺) ∈ Q))
2321, 22syl5ibrcom 146 . . 3 (((𝐴P𝐵P) ∧ (𝑔 ∈ (2nd𝐴) ∧ ∈ (2nd𝐵))) → (𝐶 = (𝑔𝐺) → 𝐶Q))
2423rexlimdvva 2440 . 2 ((𝐴P𝐵P) → (∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝐶 = (𝑔𝐺) → 𝐶Q))
25 eqeq1 2046 . . . . . 6 (𝑓 = 𝐶 → (𝑓 = (𝑔𝐺) ↔ 𝐶 = (𝑔𝐺)))
26252rexbidv 2349 . . . . 5 (𝑓 = 𝐶 → (∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺) ↔ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝐶 = (𝑔𝐺)))
2726elrab3 2699 . . . 4 (𝐶Q → (𝐶 ∈ {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)} ↔ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝐶 = (𝑔𝐺)))
2810, 27sylan9bb 435 . . 3 (((𝐴P𝐵P) ∧ 𝐶Q) → (𝐶 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝐶 = (𝑔𝐺)))
2928ex 108 . 2 ((𝐴P𝐵P) → (𝐶Q → (𝐶 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝐶 = (𝑔𝐺))))
3012, 24, 29pm5.21ndd 621 1 ((𝐴P𝐵P) → (𝐶 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝐶 = (𝑔𝐺)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98   ∧ w3a 885   = wceq 1243   ∈ wcel 1393  ∃wrex 2307  {crab 2310  ⟨cop 3378  ‘cfv 4902  (class class class)co 5512   ↦ cmpt2 5514  1st c1st 5765  2nd c2nd 5766  Qcnq 6378  Pcnp 6389 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-qs 6112  df-ni 6402  df-nqqs 6446  df-inp 6564 This theorem is referenced by:  genppreclu  6613  genpcuu  6618  genprndu  6620  genpdisj  6621  genpassu  6623  addnqprlemru  6656  mulnqprlemru  6672  distrlem1pru  6681  distrlem5pru  6685  1idpru  6689  ltexprlemfu  6709  recexprlem1ssu  6732  recexprlemss1u  6734  cauappcvgprlemladdfu  6752  caucvgprlemladdfu  6775
 Copyright terms: Public domain W3C validator