 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpelvl GIF version

Theorem genpelvl 6610
 Description: Membership in lower cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 2-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpelvl ((𝐴P𝐵P) → (𝐶 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝐶 = (𝑔𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑔,,𝑤,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑔,,𝑤,𝑣   𝑥,𝐺,𝑦,𝑧,𝑔,,𝑤,𝑣   𝑔,𝐹   𝐶,𝑔,
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,)

Proof of Theorem genpelvl
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 genpelvl.1 . . . . . . 7 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
2 genpelvl.2 . . . . . . 7 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genipv 6607 . . . . . 6 ((𝐴P𝐵P) → (𝐴𝐹𝐵) = ⟨{𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)}, {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)}⟩)
43fveq2d 5182 . . . . 5 ((𝐴P𝐵P) → (1st ‘(𝐴𝐹𝐵)) = (1st ‘⟨{𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)}, {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)}⟩))
5 nqex 6461 . . . . . . 7 Q ∈ V
65rabex 3901 . . . . . 6 {𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)} ∈ V
75rabex 3901 . . . . . 6 {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)} ∈ V
86, 7op1st 5773 . . . . 5 (1st ‘⟨{𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)}, {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)}⟩) = {𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)}
94, 8syl6eq 2088 . . . 4 ((𝐴P𝐵P) → (1st ‘(𝐴𝐹𝐵)) = {𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)})
109eleq2d 2107 . . 3 ((𝐴P𝐵P) → (𝐶 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ 𝐶 ∈ {𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)}))
11 elrabi 2695 . . 3 (𝐶 ∈ {𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)} → 𝐶Q)
1210, 11syl6bi 152 . 2 ((𝐴P𝐵P) → (𝐶 ∈ (1st ‘(𝐴𝐹𝐵)) → 𝐶Q))
13 prop 6573 . . . . . . 7 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
14 elprnql 6579 . . . . . . 7 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑔 ∈ (1st𝐴)) → 𝑔Q)
1513, 14sylan 267 . . . . . 6 ((𝐴P𝑔 ∈ (1st𝐴)) → 𝑔Q)
16 prop 6573 . . . . . . 7 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
17 elprnql 6579 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∈ (1st𝐵)) → Q)
1816, 17sylan 267 . . . . . 6 ((𝐵P ∈ (1st𝐵)) → Q)
192caovcl 5655 . . . . . 6 ((𝑔QQ) → (𝑔𝐺) ∈ Q)
2015, 18, 19syl2an 273 . . . . 5 (((𝐴P𝑔 ∈ (1st𝐴)) ∧ (𝐵P ∈ (1st𝐵))) → (𝑔𝐺) ∈ Q)
2120an4s 522 . . . 4 (((𝐴P𝐵P) ∧ (𝑔 ∈ (1st𝐴) ∧ ∈ (1st𝐵))) → (𝑔𝐺) ∈ Q)
22 eleq1 2100 . . . 4 (𝐶 = (𝑔𝐺) → (𝐶Q ↔ (𝑔𝐺) ∈ Q))
2321, 22syl5ibrcom 146 . . 3 (((𝐴P𝐵P) ∧ (𝑔 ∈ (1st𝐴) ∧ ∈ (1st𝐵))) → (𝐶 = (𝑔𝐺) → 𝐶Q))
2423rexlimdvva 2440 . 2 ((𝐴P𝐵P) → (∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝐶 = (𝑔𝐺) → 𝐶Q))
25 eqeq1 2046 . . . . . 6 (𝑓 = 𝐶 → (𝑓 = (𝑔𝐺) ↔ 𝐶 = (𝑔𝐺)))
26252rexbidv 2349 . . . . 5 (𝑓 = 𝐶 → (∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺) ↔ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝐶 = (𝑔𝐺)))
2726elrab3 2699 . . . 4 (𝐶Q → (𝐶 ∈ {𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)} ↔ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝐶 = (𝑔𝐺)))
2810, 27sylan9bb 435 . . 3 (((𝐴P𝐵P) ∧ 𝐶Q) → (𝐶 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝐶 = (𝑔𝐺)))
2928ex 108 . 2 ((𝐴P𝐵P) → (𝐶Q → (𝐶 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝐶 = (𝑔𝐺))))
3012, 24, 29pm5.21ndd 621 1 ((𝐴P𝐵P) → (𝐶 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝐶 = (𝑔𝐺)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98   ∧ w3a 885   = wceq 1243   ∈ wcel 1393  ∃wrex 2307  {crab 2310  ⟨cop 3378  ‘cfv 4902  (class class class)co 5512   ↦ cmpt2 5514  1st c1st 5765  2nd c2nd 5766  Qcnq 6378  Pcnp 6389 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-qs 6112  df-ni 6402  df-nqqs 6446  df-inp 6564 This theorem is referenced by:  genpprecll  6612  genpcdl  6617  genprndl  6619  genpdisj  6621  genpassl  6622  addnqprlemrl  6655  mulnqprlemrl  6671  distrlem1prl  6680  distrlem5prl  6684  1idprl  6688  ltexprlemfl  6707  recexprlem1ssl  6731  recexprlemss1l  6733  cauappcvgprlemladdfl  6753
 Copyright terms: Public domain W3C validator