ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqeceq Structured version   GIF version

Theorem enqeceq 6343
Description: Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.)
Assertion
Ref Expression
enqeceq (((A N B N) (𝐶 N 𝐷 N)) → ([⟨A, B⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ↔ (A ·N 𝐷) = (B ·N 𝐶)))

Proof of Theorem enqeceq
StepHypRef Expression
1 enqer 6342 . . . 4 ~Q Er (N × N)
21a1i 9 . . 3 (((A N B N) (𝐶 N 𝐷 N)) → ~Q Er (N × N))
3 opelxpi 4319 . . . 4 ((A N B N) → ⟨A, B (N × N))
43adantr 261 . . 3 (((A N B N) (𝐶 N 𝐷 N)) → ⟨A, B (N × N))
52, 4erth 6086 . 2 (((A N B N) (𝐶 N 𝐷 N)) → (⟨A, B⟩ ~Q𝐶, 𝐷⟩ ↔ [⟨A, B⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ))
6 enqbreq 6340 . 2 (((A N B N) (𝐶 N 𝐷 N)) → (⟨A, B⟩ ~Q𝐶, 𝐷⟩ ↔ (A ·N 𝐷) = (B ·N 𝐶)))
75, 6bitr3d 179 1 (((A N B N) (𝐶 N 𝐷 N)) → ([⟨A, B⟩] ~Q = [⟨𝐶, 𝐷⟩] ~Q ↔ (A ·N 𝐷) = (B ·N 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98   = wceq 1242   wcel 1390  cop 3370   class class class wbr 3755   × cxp 4286  (class class class)co 5455   Er wer 6039  [cec 6040  Ncnpi 6256   ·N cmi 6258   ~Q ceq 6263
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-coll 3863  ax-sep 3866  ax-nul 3874  ax-pow 3918  ax-pr 3935  ax-un 4136  ax-setind 4220  ax-iinf 4254
This theorem depends on definitions:  df-bi 110  df-dc 742  df-3or 885  df-3an 886  df-tru 1245  df-fal 1248  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ne 2203  df-ral 2305  df-rex 2306  df-reu 2307  df-rab 2309  df-v 2553  df-sbc 2759  df-csb 2847  df-dif 2914  df-un 2916  df-in 2918  df-ss 2925  df-nul 3219  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-int 3607  df-iun 3650  df-br 3756  df-opab 3810  df-mpt 3811  df-tr 3846  df-id 4021  df-iord 4069  df-on 4071  df-suc 4074  df-iom 4257  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-iota 4810  df-fun 4847  df-fn 4848  df-f 4849  df-f1 4850  df-fo 4851  df-f1o 4852  df-fv 4853  df-ov 5458  df-oprab 5459  df-mpt2 5460  df-1st 5709  df-2nd 5710  df-recs 5861  df-irdg 5897  df-oadd 5944  df-omul 5945  df-er 6042  df-ec 6044  df-ni 6288  df-mi 6290  df-enq 6331
This theorem is referenced by:  ordpipqqs  6358  nqtri3or  6380
  Copyright terms: Public domain W3C validator