ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemladdfl Unicode version

Theorem cauappcvgprlemladdfl 6753
Description: Lemma for cauappcvgprlemladd 6756. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
cauappcvgprlemladd.s  |-  ( ph  ->  S  e.  Q. )
Assertion
Ref Expression
cauappcvgprlemladdfl  |-  ( ph  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  C_  ( 1st ` 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) )
Distinct variable groups:    A, p    L, p, q    ph, p, q    F, l, u, p, q    S, l, q, u
Allowed substitution hints:    ph( u, l)    A( u, q, l)    S( p)    L( u, l)

Proof of Theorem cauappcvgprlemladdfl
Dummy variables  f  g  h  r  s  t  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cauappcvgpr.f . . . . . . 7  |-  ( ph  ->  F : Q. --> Q. )
2 cauappcvgpr.app . . . . . . 7  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
3 cauappcvgpr.bnd . . . . . . 7  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
4 cauappcvgpr.lim . . . . . . 7  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
51, 2, 3, 4cauappcvgprlemcl 6751 . . . . . 6  |-  ( ph  ->  L  e.  P. )
6 cauappcvgprlemladd.s . . . . . . 7  |-  ( ph  ->  S  e.  Q. )
7 nqprlu 6645 . . . . . . 7  |-  ( S  e.  Q.  ->  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >.  e.  P. )
86, 7syl 14 . . . . . 6  |-  ( ph  -> 
<. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )
9 df-iplp 6566 . . . . . . 7  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  x )  /\  h  e.  ( 1st `  y
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  x )  /\  h  e.  ( 2nd `  y
)  /\  f  =  ( g  +Q  h
) ) } >. )
10 addclnq 6473 . . . . . . 7  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
119, 10genpelvl 6610 . . . . . 6  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )  ->  ( r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  <->  E. s  e.  ( 1st `  L ) E. t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
r  =  ( s  +Q  t ) ) )
125, 8, 11syl2anc 391 . . . . 5  |-  ( ph  ->  ( r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  <->  E. s  e.  ( 1st `  L ) E. t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
r  =  ( s  +Q  t ) ) )
1312biimpa 280 . . . 4  |-  ( (
ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  ->  E. s  e.  ( 1st `  L
) E. t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) r  =  ( s  +Q  t ) )
14 oveq1 5519 . . . . . . . . . . . . . . . 16  |-  ( l  =  s  ->  (
l  +Q  q )  =  ( s  +Q  q ) )
1514breq1d 3774 . . . . . . . . . . . . . . 15  |-  ( l  =  s  ->  (
( l  +Q  q
)  <Q  ( F `  q )  <->  ( s  +Q  q )  <Q  ( F `  q )
) )
1615rexbidv 2327 . . . . . . . . . . . . . 14  |-  ( l  =  s  ->  ( E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q )  <->  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
174fveq2i 5181 . . . . . . . . . . . . . . 15  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >. )
18 nqex 6461 . . . . . . . . . . . . . . . . 17  |-  Q.  e.  _V
1918rabex 3901 . . . . . . . . . . . . . . . 16  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) }  e.  _V
2018rabex 3901 . . . . . . . . . . . . . . . 16  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u }  e.  _V
2119, 20op1st 5773 . . . . . . . . . . . . . . 15  |-  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u } >. )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
2217, 21eqtri 2060 . . . . . . . . . . . . . 14  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
2316, 22elrab2 2700 . . . . . . . . . . . . 13  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
2423biimpi 113 . . . . . . . . . . . 12  |-  ( s  e.  ( 1st `  L
)  ->  ( s  e.  Q.  /\  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
2524ad2antrl 459 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  -> 
( s  e.  Q.  /\ 
E. q  e.  Q.  ( s  +Q  q
)  <Q  ( F `  q ) ) )
2625adantr 261 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( s  e.  Q.  /\ 
E. q  e.  Q.  ( s  +Q  q
)  <Q  ( F `  q ) ) )
2726simpld 105 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
s  e.  Q. )
28 vex 2560 . . . . . . . . . . . . . . 15  |-  t  e. 
_V
29 breq1 3767 . . . . . . . . . . . . . . 15  |-  ( l  =  t  ->  (
l  <Q  S  <->  t  <Q  S ) )
30 ltnqex 6647 . . . . . . . . . . . . . . . 16  |-  { l  |  l  <Q  S }  e.  _V
31 gtnqex 6648 . . . . . . . . . . . . . . . 16  |-  { u  |  S  <Q  u }  e.  _V
3230, 31op1st 5773 . . . . . . . . . . . . . . 15  |-  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  =  { l  |  l 
<Q  S }
3328, 29, 32elab2 2690 . . . . . . . . . . . . . 14  |-  ( t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  <->  t  <Q  S )
3433biimpi 113 . . . . . . . . . . . . 13  |-  ( t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  ->  t  <Q  S )
3534ad2antll 460 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  -> 
t  <Q  S )
3635adantr 261 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
t  <Q  S )
37 ltrelnq 6463 . . . . . . . . . . . 12  |-  <Q  C_  ( Q.  X.  Q. )
3837brel 4392 . . . . . . . . . . 11  |-  ( t 
<Q  S  ->  ( t  e.  Q.  /\  S  e.  Q. ) )
3936, 38syl 14 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( t  e.  Q.  /\  S  e.  Q. )
)
4039simpld 105 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
t  e.  Q. )
41 addclnq 6473 . . . . . . . . 9  |-  ( ( s  e.  Q.  /\  t  e.  Q. )  ->  ( s  +Q  t
)  e.  Q. )
4227, 40, 41syl2anc 391 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( s  +Q  t
)  e.  Q. )
43 eleq1 2100 . . . . . . . . 9  |-  ( r  =  ( s  +Q  t )  ->  (
r  e.  Q.  <->  ( s  +Q  t )  e.  Q. ) )
4443adantl 262 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( r  e.  Q.  <->  ( s  +Q  t )  e.  Q. ) )
4542, 44mpbird 156 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
r  e.  Q. )
4626simprd 107 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  ->  E. q  e.  Q.  ( s  +Q  q
)  <Q  ( F `  q ) )
4727ad2antrr 457 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( s  +Q  q
)  <Q  ( F `  q ) )  -> 
s  e.  Q. )
48 simplr 482 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( s  +Q  q
)  <Q  ( F `  q ) )  -> 
q  e.  Q. )
4940ad2antrr 457 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( s  +Q  q
)  <Q  ( F `  q ) )  -> 
t  e.  Q. )
50 addcomnqg 6479 . . . . . . . . . . . . . 14  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
5150adantl 262 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( s  +Q  q
)  <Q  ( F `  q ) )  /\  ( f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
52 addassnqg 6480 . . . . . . . . . . . . . 14  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
( f  +Q  g
)  +Q  h )  =  ( f  +Q  ( g  +Q  h
) ) )
5352adantl 262 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( s  +Q  q
)  <Q  ( F `  q ) )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )
)  ->  ( (
f  +Q  g )  +Q  h )  =  ( f  +Q  (
g  +Q  h ) ) )
5447, 48, 49, 51, 53caov32d 5681 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( s  +Q  q
)  <Q  ( F `  q ) )  -> 
( ( s  +Q  q )  +Q  t
)  =  ( ( s  +Q  t )  +Q  q ) )
55 simpr 103 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  /\  ( s  +Q  q
)  <Q  ( F `  q ) )  -> 
( s  +Q  q
)  <Q  ( F `  q ) )
5635ad2antrr 457 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  /\  ( s  +Q  q
)  <Q  ( F `  q ) )  -> 
t  <Q  S )
5737brel 4392 . . . . . . . . . . . . . . 15  |-  ( ( s  +Q  q ) 
<Q  ( F `  q
)  ->  ( (
s  +Q  q )  e.  Q.  /\  ( F `  q )  e.  Q. ) )
58 lt2addnq 6502 . . . . . . . . . . . . . . 15  |-  ( ( ( ( s  +Q  q )  e.  Q.  /\  ( F `  q
)  e.  Q. )  /\  ( t  e.  Q.  /\  S  e.  Q. )
)  ->  ( (
( s  +Q  q
)  <Q  ( F `  q )  /\  t  <Q  S )  ->  (
( s  +Q  q
)  +Q  t ) 
<Q  ( ( F `  q )  +Q  S
) ) )
5957, 39, 58syl2anr 274 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  /\  ( s  +Q  q
)  <Q  ( F `  q ) )  -> 
( ( ( s  +Q  q )  <Q 
( F `  q
)  /\  t  <Q  S )  ->  ( (
s  +Q  q )  +Q  t )  <Q 
( ( F `  q )  +Q  S
) ) )
6055, 56, 59mp2and 409 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  /\  ( s  +Q  q
)  <Q  ( F `  q ) )  -> 
( ( s  +Q  q )  +Q  t
)  <Q  ( ( F `
 q )  +Q  S ) )
6160adantlr 446 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( s  +Q  q
)  <Q  ( F `  q ) )  -> 
( ( s  +Q  q )  +Q  t
)  <Q  ( ( F `
 q )  +Q  S ) )
6254, 61eqbrtrrd 3786 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( s  +Q  q
)  <Q  ( F `  q ) )  -> 
( ( s  +Q  t )  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) )
63 oveq1 5519 . . . . . . . . . . . . 13  |-  ( r  =  ( s  +Q  t )  ->  (
r  +Q  q )  =  ( ( s  +Q  t )  +Q  q ) )
6463breq1d 3774 . . . . . . . . . . . 12  |-  ( r  =  ( s  +Q  t )  ->  (
( r  +Q  q
)  <Q  ( ( F `
 q )  +Q  S )  <->  ( (
s  +Q  t )  +Q  q )  <Q 
( ( F `  q )  +Q  S
) ) )
6564ad3antlr 462 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( s  +Q  q
)  <Q  ( F `  q ) )  -> 
( ( r  +Q  q )  <Q  (
( F `  q
)  +Q  S )  <-> 
( ( s  +Q  t )  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) ) )
6662, 65mpbird 156 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( s  +Q  q
)  <Q  ( F `  q ) )  -> 
( r  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) )
6766ex 108 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  ->  ( ( s  +Q  q )  <Q  ( F `  q )  ->  ( r  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) ) )
6867reximdva 2421 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( E. q  e. 
Q.  ( s  +Q  q )  <Q  ( F `  q )  ->  E. q  e.  Q.  ( r  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) ) )
6946, 68mpd 13 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  ->  E. q  e.  Q.  ( r  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) )
70 oveq1 5519 . . . . . . . . . 10  |-  ( l  =  r  ->  (
l  +Q  q )  =  ( r  +Q  q ) )
7170breq1d 3774 . . . . . . . . 9  |-  ( l  =  r  ->  (
( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S )  <->  ( r  +Q  q )  <Q  (
( F `  q
)  +Q  S ) ) )
7271rexbidv 2327 . . . . . . . 8  |-  ( l  =  r  ->  ( E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S )  <->  E. q  e.  Q.  ( r  +Q  q )  <Q  (
( F `  q
)  +Q  S ) ) )
7318rabex 3901 . . . . . . . . 9  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) }  e.  _V
7418rabex 3901 . . . . . . . . 9  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u }  e.  _V
7573, 74op1st 5773 . . . . . . . 8  |-  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) }
7672, 75elrab2 2700 . . . . . . 7  |-  ( r  e.  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )  <-> 
( r  e.  Q.  /\ 
E. q  e.  Q.  ( r  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) ) )
7745, 69, 76sylanbrc 394 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
r  e.  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. ) )
7877ex 108 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 1st `  L )  /\  t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  -> 
( r  =  ( s  +Q  t )  ->  r  e.  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ) )
7978rexlimdvva 2440 . . . 4  |-  ( (
ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  ->  ( E. s  e.  ( 1st `  L ) E. t  e.  ( 1st `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
r  =  ( s  +Q  t )  -> 
r  e.  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. ) ) )
8013, 79mpd 13 . . 3  |-  ( (
ph  /\  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  ->  r  e.  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) )
8180ex 108 . 2  |-  ( ph  ->  ( r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  ->  r  e.  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ) )
8281ssrdv 2951 1  |-  ( ph  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  C_  ( 1st ` 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243    e. wcel 1393   {cab 2026   A.wral 2306   E.wrex 2307   {crab 2310    C_ wss 2917   <.cop 3378   class class class wbr 3764   -->wf 4898   ` cfv 4902  (class class class)co 5512   1stc1st 5765   Q.cnq 6378    +Q cplq 6380    <Q cltq 6383   P.cnp 6389    +P. cpp 6391
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-inp 6564  df-iplp 6566
This theorem is referenced by:  cauappcvgprlemladdru  6754  cauappcvgprlemladd  6756
  Copyright terms: Public domain W3C validator