![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexlimdvva | Unicode version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rexlimdvva.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rexlimdvva |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvva.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ex 108 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | rexlimdvv 2433 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-4 1397 ax-17 1416 ax-ial 1424 ax-i5r 1425 |
This theorem depends on definitions: df-bi 110 df-nf 1347 df-ral 2305 df-rex 2306 |
This theorem is referenced by: ovelrn 5591 f1o2ndf1 5791 eroveu 6133 eroprf 6135 genipv 6492 genpelvl 6495 genpelvu 6496 genprndl 6504 genprndu 6505 addlocpr 6519 addnqprlemrl 6538 addnqprlemru 6539 ltsopr 6570 ltaddpr 6571 ltexprlemfl 6583 ltexprlemrl 6584 ltexprlemfu 6585 ltexprlemru 6586 cauappcvgprlemladdfu 6626 cauappcvgprlemladdfl 6627 caucvgprlemdisj 6645 caucvgprlemladdfu 6648 apreap 7371 apreim 7387 apirr 7389 apsym 7390 apcotr 7391 apadd1 7392 apneg 7395 mulext1 7396 apti 7406 qapne 8350 cjap 9134 |
Copyright terms: Public domain | W3C validator |