![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elab2 | Unicode version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elab2.1 |
![]() ![]() ![]() ![]() |
elab2.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
elab2.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elab2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab2.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | elab2.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | elab2.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | elab2g 2689 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 |
This theorem is referenced by: elpw 3365 elint 3621 opabid 3994 elrn2 4576 elimasn 4692 oprabid 5537 tfrlem3a 5925 addnqprlemrl 6655 addnqprlemru 6656 addnqprlemfl 6657 addnqprlemfu 6658 mulnqprlemrl 6671 mulnqprlemru 6672 mulnqprlemfl 6673 mulnqprlemfu 6674 ltnqpr 6691 ltnqpri 6692 archpr 6741 cauappcvgprlemladdfu 6752 cauappcvgprlemladdfl 6753 caucvgprlemladdfu 6775 caucvgprprlemopu 6797 |
Copyright terms: Public domain | W3C validator |