ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  archpr Unicode version

Theorem archpr 6741
Description: For any positive real, there is an integer that is greater than it. This is also known as the "archimedean property". The integer  x is embedded into the reals as described at nnprlu 6651. (Contributed by Jim Kingdon, 22-Apr-2020.)
Assertion
Ref Expression
archpr  |-  ( A  e.  P.  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
Distinct variable group:    A, l, u, x

Proof of Theorem archpr
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 6573 . . 3  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 prmu 6576 . . 3  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. z  e.  Q.  z  e.  ( 2nd `  A ) )
31, 2syl 14 . 2  |-  ( A  e.  P.  ->  E. z  e.  Q.  z  e.  ( 2nd `  A ) )
4 archnqq 6515 . . . 4  |-  ( z  e.  Q.  ->  E. x  e.  N.  z  <Q  [ <. x ,  1o >. ]  ~Q  )
54ad2antrl 459 . . 3  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  E. x  e.  N.  z  <Q  [ <. x ,  1o >. ]  ~Q  )
6 simprl 483 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  z  e.  Q. )
76ad2antrr 457 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  z  e.  Q. )
8 simprr 484 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  z  e.  ( 2nd `  A ) )
98ad2antrr 457 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  z  e.  ( 2nd `  A ) )
10 simpr 103 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  z  <Q  [ <. x ,  1o >. ]  ~Q  )
11 vex 2560 . . . . . . . . 9  |-  z  e. 
_V
12 breq1 3767 . . . . . . . . 9  |-  ( l  =  z  ->  (
l  <Q  [ <. x ,  1o >. ]  ~Q  <->  z  <Q  [
<. x ,  1o >. ]  ~Q  ) )
13 ltnqex 6647 . . . . . . . . . 10  |-  { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  }  e.  _V
14 gtnqex 6648 . . . . . . . . . 10  |-  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u }  e.  _V
1513, 14op1st 5773 . . . . . . . . 9  |-  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )  =  { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  }
1611, 12, 15elab2 2690 . . . . . . . 8  |-  ( z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )  <->  z  <Q  [ <. x ,  1o >. ]  ~Q  )
1710, 16sylibr 137 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) )
18 eleq1 2100 . . . . . . . . 9  |-  ( w  =  z  ->  (
w  e.  ( 2nd `  A )  <->  z  e.  ( 2nd `  A ) ) )
19 eleq1 2100 . . . . . . . . 9  |-  ( w  =  z  ->  (
w  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )  <->  z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) )
2018, 19anbi12d 442 . . . . . . . 8  |-  ( w  =  z  ->  (
( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) )  <->  ( z  e.  ( 2nd `  A
)  /\  z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) ) )
2120rspcev 2656 . . . . . . 7  |-  ( ( z  e.  Q.  /\  ( z  e.  ( 2nd `  A )  /\  z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) )  ->  E. w  e.  Q.  ( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st ` 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) )
227, 9, 17, 21syl12anc 1133 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  E. w  e.  Q.  ( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st ` 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) )
23 simplll 485 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  A  e.  P. )
24 nnprlu 6651 . . . . . . . 8  |-  ( x  e.  N.  ->  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
2524ad2antlr 458 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
26 ltdfpr 6604 . . . . . . 7  |-  ( ( A  e.  P.  /\  <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )  -> 
( A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. 
<->  E. w  e.  Q.  ( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st ` 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) ) )
2723, 25, 26syl2anc 391 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  ( A  <P  <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  <->  E. w  e.  Q.  ( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st ` 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) ) )
2822, 27mpbird 156 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
2928ex 108 . . . 4  |-  ( ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  /\  x  e.  N. )  ->  ( z  <Q  [ <. x ,  1o >. ]  ~Q  ->  A  <P 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) )
3029reximdva 2421 . . 3  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  ( E. x  e.  N.  z  <Q  [ <. x ,  1o >. ]  ~Q  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) )
315, 30mpd 13 . 2  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
323, 31rexlimddv 2437 1  |-  ( A  e.  P.  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    e. wcel 1393   {cab 2026   E.wrex 2307   <.cop 3378   class class class wbr 3764   ` cfv 4902   1stc1st 5765   2ndc2nd 5766   1oc1o 5994   [cec 6104   N.cnpi 6370    ~Q ceq 6377   Q.cnq 6378    <Q cltq 6383   P.cnp 6389    <P cltp 6393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-inp 6564  df-iltp 6568
This theorem is referenced by:  archsr  6866
  Copyright terms: Public domain W3C validator