ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullt0 GIF version

Theorem mullt0 7475
Description: The product of two negative numbers is positive. (Contributed by Jeff Hankins, 8-Jun-2009.)
Assertion
Ref Expression
mullt0 (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → 0 < (𝐴 · 𝐵))

Proof of Theorem mullt0
StepHypRef Expression
1 renegcl 7272 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
21adantr 261 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
3 lt0neg1 7463 . . . . 5 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
43biimpa 280 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 < -𝐴)
52, 4jca 290 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (-𝐴 ∈ ℝ ∧ 0 < -𝐴))
6 renegcl 7272 . . . . 5 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
76adantr 261 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 < 0) → -𝐵 ∈ ℝ)
8 lt0neg1 7463 . . . . 5 (𝐵 ∈ ℝ → (𝐵 < 0 ↔ 0 < -𝐵))
98biimpa 280 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 < 0) → 0 < -𝐵)
107, 9jca 290 . . 3 ((𝐵 ∈ ℝ ∧ 𝐵 < 0) → (-𝐵 ∈ ℝ ∧ 0 < -𝐵))
11 mulgt0 7093 . . 3 (((-𝐴 ∈ ℝ ∧ 0 < -𝐴) ∧ (-𝐵 ∈ ℝ ∧ 0 < -𝐵)) → 0 < (-𝐴 · -𝐵))
125, 10, 11syl2an 273 . 2 (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → 0 < (-𝐴 · -𝐵))
13 recn 7014 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
14 recn 7014 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
15 mul2neg 7395 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
1613, 14, 15syl2an 273 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
1716ad2ant2r 478 . 2 (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
1812, 17breqtrd 3788 1 (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → 0 < (𝐴 · 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393   class class class wbr 3764  (class class class)co 5512  cc 6887  cr 6888  0cc0 6889   · cmul 6894   < clt 7060  -cneg 7183
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltadd 7000  ax-pre-mulgt0 7001
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-pnf 7062  df-mnf 7063  df-ltxr 7065  df-sub 7184  df-neg 7185
This theorem is referenced by:  inelr  7575  apsqgt0  7592
  Copyright terms: Public domain W3C validator