ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0ex GIF version

Theorem enq0ex 6537
Description: The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.)
Assertion
Ref Expression
enq0ex ~Q0 ∈ V

Proof of Theorem enq0ex
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 4316 . . . 4 ω ∈ V
2 niex 6410 . . . 4 N ∈ V
31, 2xpex 4453 . . 3 (ω × N) ∈ V
43, 3xpex 4453 . 2 ((ω × N) × (ω × N)) ∈ V
5 df-enq0 6522 . . 3 ~Q0 = {⟨𝑣, 𝑢⟩ ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥𝑦𝑧𝑤((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝑢 = ⟨𝑧, 𝑤⟩) ∧ (𝑥 ·𝑜 𝑤) = (𝑦 ·𝑜 𝑧)))}
6 opabssxp 4414 . . 3 {⟨𝑣, 𝑢⟩ ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥𝑦𝑧𝑤((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝑢 = ⟨𝑧, 𝑤⟩) ∧ (𝑥 ·𝑜 𝑤) = (𝑦 ·𝑜 𝑧)))} ⊆ ((ω × N) × (ω × N))
75, 6eqsstri 2975 . 2 ~Q0 ⊆ ((ω × N) × (ω × N))
84, 7ssexi 3895 1 ~Q0 ∈ V
Colors of variables: wff set class
Syntax hints:  wa 97   = wceq 1243  wex 1381  wcel 1393  Vcvv 2557  cop 3378  {copab 3817  ωcom 4313   × cxp 4343  (class class class)co 5512   ·𝑜 comu 5999  Ncnpi 6370   ~Q0 ceq0 6384
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-opab 3819  df-iom 4314  df-xp 4351  df-ni 6402  df-enq0 6522
This theorem is referenced by:  nqnq0  6539  addnnnq0  6547  mulnnnq0  6548  addclnq0  6549  mulclnq0  6550  prarloclemcalc  6600
  Copyright terms: Public domain W3C validator