Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > niex | GIF version |
Description: The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.) |
Ref | Expression |
---|---|
niex | ⊢ N ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4316 | . 2 ⊢ ω ∈ V | |
2 | df-ni 6402 | . . 3 ⊢ N = (ω ∖ {∅}) | |
3 | difss 3070 | . . 3 ⊢ (ω ∖ {∅}) ⊆ ω | |
4 | 2, 3 | eqsstri 2975 | . 2 ⊢ N ⊆ ω |
5 | 1, 4 | ssexi 3895 | 1 ⊢ N ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1393 Vcvv 2557 ∖ cdif 2914 ∅c0 3224 {csn 3375 ωcom 4313 Ncnpi 6370 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-iinf 4311 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-v 2559 df-dif 2920 df-in 2924 df-ss 2931 df-int 3616 df-iom 4314 df-ni 6402 |
This theorem is referenced by: enqex 6458 nqex 6461 enq0ex 6537 nq0ex 6538 |
Copyright terms: Public domain | W3C validator |