Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0npi | GIF version |
Description: The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.) |
Ref | Expression |
---|---|
0npi | ⊢ ¬ ∅ ∈ N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2040 | . 2 ⊢ ∅ = ∅ | |
2 | elni 6406 | . . . 4 ⊢ (∅ ∈ N ↔ (∅ ∈ ω ∧ ∅ ≠ ∅)) | |
3 | 2 | simprbi 260 | . . 3 ⊢ (∅ ∈ N → ∅ ≠ ∅) |
4 | 3 | necon2bi 2260 | . 2 ⊢ (∅ = ∅ → ¬ ∅ ∈ N) |
5 | 1, 4 | ax-mp 7 | 1 ⊢ ¬ ∅ ∈ N |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1243 ∈ wcel 1393 ≠ wne 2204 ∅c0 3224 ωcom 4313 Ncnpi 6370 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-v 2559 df-dif 2920 df-sn 3381 df-ni 6402 |
This theorem is referenced by: elni2 6412 |
Copyright terms: Public domain | W3C validator |