ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  niex Unicode version

Theorem niex 6410
Description: The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.)
Assertion
Ref Expression
niex  |-  N.  e.  _V

Proof of Theorem niex
StepHypRef Expression
1 omex 4316 . 2  |-  om  e.  _V
2 df-ni 6402 . . 3  |-  N.  =  ( om  \  { (/) } )
3 difss 3070 . . 3  |-  ( om 
\  { (/) } ) 
C_  om
42, 3eqsstri 2975 . 2  |-  N.  C_  om
51, 4ssexi 3895 1  |-  N.  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 1393   _Vcvv 2557    \ cdif 2914   (/)c0 3224   {csn 3375   omcom 4313   N.cnpi 6370
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-dif 2920  df-in 2924  df-ss 2931  df-int 3616  df-iom 4314  df-ni 6402
This theorem is referenced by:  enqex  6458  nqex  6461  enq0ex  6537  nq0ex  6538
  Copyright terms: Public domain W3C validator