ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isermono Unicode version

Theorem isermono 9237
Description: The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by Jim Kingdon, 15-Aug-2021.)
Hypotheses
Ref Expression
isermono.1  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
isermono.2  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
isermono.3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  RR )
isermono.4  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  0  <_  ( F `  x
) )
Assertion
Ref Expression
isermono  |-  ( ph  ->  (  seq M (  +  ,  F ,  RR ) `  K )  <_  (  seq M
(  +  ,  F ,  RR ) `  N
) )
Distinct variable groups:    x, F    x, K    x, M    x, N    ph, x

Proof of Theorem isermono
Dummy variables  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isermono.2 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
2 elfzuz 8886 . . . 4  |-  ( k  e.  ( K ... N )  ->  k  e.  ( ZZ>= `  K )
)
3 isermono.1 . . . 4  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
4 uztrn 8489 . . . 4  |-  ( ( k  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
52, 3, 4syl2anr 274 . . 3  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  k  e.  ( ZZ>= `  M )
)
6 reex 7015 . . . 4  |-  RR  e.  _V
76a1i 9 . . 3  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  RR  e.  _V )
8 isermono.3 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  RR )
98adantlr 446 . . 3  |-  ( ( ( ph  /\  k  e.  ( K ... N
) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  RR )
10 readdcl 7007 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  +  y )  e.  RR )
1110adantl 262 . . 3  |-  ( ( ( ph  /\  k  e.  ( K ... N
) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( x  +  y )  e.  RR )
125, 7, 9, 11iseqcl 9223 . 2  |-  ( (
ph  /\  k  e.  ( K ... N ) )  ->  (  seq M (  +  ,  F ,  RR ) `  k )  e.  RR )
13 simpr 103 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( K ... ( N  -  1 ) ) )
143adantr 261 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  K  e.  ( ZZ>= `  M )
)
15 eluzelz 8482 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
1614, 15syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  K  e.  ZZ )
171adantr 261 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  N  e.  ( ZZ>= `  K )
)
18 eluzelz 8482 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  K
)  ->  N  e.  ZZ )
1917, 18syl 14 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  N  e.  ZZ )
20 peano2zm 8283 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
2119, 20syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( N  -  1 )  e.  ZZ )
22 elfzelz 8890 . . . . . . . . 9  |-  ( k  e.  ( K ... ( N  -  1
) )  ->  k  e.  ZZ )
2322adantl 262 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ZZ )
24 1zzd 8272 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  1  e.  ZZ )
25 fzaddel 8922 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( k  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( k  e.  ( K ... ( N  -  1 ) )  <-> 
( k  +  1 )  e.  ( ( K  +  1 ) ... ( ( N  -  1 )  +  1 ) ) ) )
2616, 21, 23, 24, 25syl22anc 1136 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  e.  ( K ... ( N  -  1 ) )  <->  ( k  +  1 )  e.  ( ( K  +  1 ) ... ( ( N  -  1 )  +  1 ) ) ) )
2713, 26mpbid 135 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( ( K  + 
1 ) ... (
( N  -  1 )  +  1 ) ) )
28 zcn 8250 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  CC )
29 ax-1cn 6977 . . . . . . . . 9  |-  1  e.  CC
30 npcan 7220 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
3128, 29, 30sylancl 392 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( N  -  1 )  +  1 )  =  N )
3219, 31syl 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( ( N  -  1 )  +  1 )  =  N )
3332oveq2d 5528 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( ( K  +  1 ) ... ( ( N  -  1 )  +  1 ) )  =  ( ( K  + 
1 ) ... N
) )
3427, 33eleqtrd 2116 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( ( K  + 
1 ) ... N
) )
35 isermono.4 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( K  + 
1 ) ... N
) )  ->  0  <_  ( F `  x
) )
3635ralrimiva 2392 . . . . . 6  |-  ( ph  ->  A. x  e.  ( ( K  +  1 ) ... N ) 0  <_  ( F `  x ) )
3736adantr 261 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  A. x  e.  ( ( K  + 
1 ) ... N
) 0  <_  ( F `  x )
)
38 fveq2 5178 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  ( F `  x )  =  ( F `  ( k  +  1 ) ) )
3938breq2d 3776 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  (
0  <_  ( F `  x )  <->  0  <_  ( F `  ( k  +  1 ) ) ) )
4039rspcv 2652 . . . . 5  |-  ( ( k  +  1 )  e.  ( ( K  +  1 ) ... N )  ->  ( A. x  e.  (
( K  +  1 ) ... N ) 0  <_  ( F `  x )  ->  0  <_  ( F `  (
k  +  1 ) ) ) )
4134, 37, 40sylc 56 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  0  <_  ( F `  ( k  +  1 ) ) )
42 fzelp1 8936 . . . . . . . 8  |-  ( k  e.  ( K ... ( N  -  1
) )  ->  k  e.  ( K ... (
( N  -  1 )  +  1 ) ) )
4342adantl 262 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( K ... ( ( N  -  1 )  +  1 ) ) )
4432oveq2d 5528 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( K ... ( ( N  - 
1 )  +  1 ) )  =  ( K ... N ) )
4543, 44eleqtrd 2116 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( K ... N ) )
4645, 12syldan 266 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ,  RR ) `  k )  e.  RR )
47 fzss1 8926 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K ... N )  C_  ( M ... N ) )
4814, 47syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( K ... N )  C_  ( M ... N ) )
49 fzp1elp1 8937 . . . . . . . . . 10  |-  ( k  e.  ( K ... ( N  -  1
) )  ->  (
k  +  1 )  e.  ( K ... ( ( N  - 
1 )  +  1 ) ) )
5049adantl 262 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( K ... (
( N  -  1 )  +  1 ) ) )
5150, 44eleqtrd 2116 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( K ... N
) )
5248, 51sseldd 2946 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( M ... N
) )
53 elfzuz 8886 . . . . . . 7  |-  ( ( k  +  1 )  e.  ( M ... N )  ->  (
k  +  1 )  e.  ( ZZ>= `  M
) )
5452, 53syl 14 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
558ralrimiva 2392 . . . . . . 7  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  RR )
5655adantr 261 . . . . . 6  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  A. x  e.  ( ZZ>= `  M )
( F `  x
)  e.  RR )
5738eleq1d 2106 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  (
( F `  x
)  e.  RR  <->  ( F `  ( k  +  1 ) )  e.  RR ) )
5857rspcv 2652 . . . . . 6  |-  ( ( k  +  1 )  e.  ( ZZ>= `  M
)  ->  ( A. x  e.  ( ZZ>= `  M ) ( F `
 x )  e.  RR  ->  ( F `  ( k  +  1 ) )  e.  RR ) )
5954, 56, 58sylc 56 . . . . 5  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( F `  ( k  +  1 ) )  e.  RR )
6046, 59addge01d 7524 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  ( 0  <_  ( F `  ( k  +  1 ) )  <->  (  seq M (  +  ,  F ,  RR ) `  k )  <_  (
(  seq M (  +  ,  F ,  RR ) `  k )  +  ( F `  ( k  +  1 ) ) ) ) )
6141, 60mpbid 135 . . 3  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ,  RR ) `  k )  <_  (
(  seq M (  +  ,  F ,  RR ) `  k )  +  ( F `  ( k  +  1 ) ) ) )
6245, 5syldan 266 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  k  e.  ( ZZ>= `  M )
)
636a1i 9 . . . 4  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  RR  e.  _V )
648adantlr 446 . . . 4  |-  ( ( ( ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  RR )
6510adantl 262 . . . 4  |-  ( ( ( ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( x  +  y )  e.  RR )
6662, 63, 64, 65iseqp1 9225 . . 3  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ,  RR ) `  ( k  +  1 ) )  =  ( (  seq M (  +  ,  F ,  RR ) `  k )  +  ( F `  ( k  +  1 ) ) ) )
6761, 66breqtrrd 3790 . 2  |-  ( (
ph  /\  k  e.  ( K ... ( N  -  1 ) ) )  ->  (  seq M (  +  ,  F ,  RR ) `  k )  <_  (  seq M (  +  ,  F ,  RR ) `  ( k  +  1 ) ) )
681, 12, 67monoord 9235 1  |-  ( ph  ->  (  seq M (  +  ,  F ,  RR ) `  K )  <_  (  seq M
(  +  ,  F ,  RR ) `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   A.wral 2306   _Vcvv 2557    C_ wss 2917   class class class wbr 3764   ` cfv 4902  (class class class)co 5512   CCcc 6887   RRcr 6888   0cc0 6889   1c1 6890    + caddc 6892    <_ cle 7061    - cmin 7182   ZZcz 8245   ZZ>=cuz 8473   ...cfz 8874    seqcseq 9211
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474  df-fz 8875  df-iseq 9212
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator