ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  monoord2 Unicode version

Theorem monoord2 9236
Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
monoord2.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
monoord2.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
monoord2.3  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k )
)
Assertion
Ref Expression
monoord2  |-  ( ph  ->  ( F `  N
)  <_  ( F `  M ) )
Distinct variable groups:    k, F    k, M    k, N    ph, k

Proof of Theorem monoord2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 monoord2.1 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 monoord2.2 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
32renegcld 7378 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  -u ( F `
 k )  e.  RR )
4 eqid 2040 . . . . . 6  |-  ( k  e.  ( M ... N )  |->  -u ( F `  k )
)  =  ( k  e.  ( M ... N )  |->  -u ( F `  k )
)
53, 4fmptd 5322 . . . . 5  |-  ( ph  ->  ( k  e.  ( M ... N ) 
|->  -u ( F `  k ) ) : ( M ... N
) --> RR )
65ffvelrnda 5302 . . . 4  |-  ( (
ph  /\  n  e.  ( M ... N ) )  ->  ( (
k  e.  ( M ... N )  |->  -u ( F `  k ) ) `  n )  e.  RR )
7 monoord2.3 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k )
)
87ralrimiva 2392 . . . . . . . 8  |-  ( ph  ->  A. k  e.  ( M ... ( N  -  1 ) ) ( F `  (
k  +  1 ) )  <_  ( F `  k ) )
9 oveq1 5519 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
k  +  1 )  =  ( n  + 
1 ) )
109fveq2d 5182 . . . . . . . . . 10  |-  ( k  =  n  ->  ( F `  ( k  +  1 ) )  =  ( F `  ( n  +  1
) ) )
11 fveq2 5178 . . . . . . . . . 10  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
1210, 11breq12d 3777 . . . . . . . . 9  |-  ( k  =  n  ->  (
( F `  (
k  +  1 ) )  <_  ( F `  k )  <->  ( F `  ( n  +  1 ) )  <_  ( F `  n )
) )
1312cbvralv 2533 . . . . . . . 8  |-  ( A. k  e.  ( M ... ( N  -  1 ) ) ( F `
 ( k  +  1 ) )  <_ 
( F `  k
)  <->  A. n  e.  ( M ... ( N  -  1 ) ) ( F `  (
n  +  1 ) )  <_  ( F `  n ) )
148, 13sylib 127 . . . . . . 7  |-  ( ph  ->  A. n  e.  ( M ... ( N  -  1 ) ) ( F `  (
n  +  1 ) )  <_  ( F `  n ) )
1514r19.21bi 2407 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  ( n  +  1 ) )  <_  ( F `  n )
)
16 fzp1elp1 8937 . . . . . . . . . 10  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  (
n  +  1 )  e.  ( M ... ( ( N  - 
1 )  +  1 ) ) )
1716adantl 262 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( n  +  1 )  e.  ( M ... (
( N  -  1 )  +  1 ) ) )
18 eluzelz 8482 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
191, 18syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ZZ )
2019zcnd 8361 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  CC )
21 ax-1cn 6977 . . . . . . . . . . . 12  |-  1  e.  CC
22 npcan 7220 . . . . . . . . . . . 12  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
2320, 21, 22sylancl 392 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
2423oveq2d 5528 . . . . . . . . . 10  |-  ( ph  ->  ( M ... (
( N  -  1 )  +  1 ) )  =  ( M ... N ) )
2524adantr 261 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( M ... ( ( N  - 
1 )  +  1 ) )  =  ( M ... N ) )
2617, 25eleqtrd 2116 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( n  +  1 )  e.  ( M ... N
) )
272ralrimiva 2392 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  ( M ... N ) ( F `  k
)  e.  RR )
2827adantr 261 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  A. k  e.  ( M ... N
) ( F `  k )  e.  RR )
29 fveq2 5178 . . . . . . . . . 10  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
3029eleq1d 2106 . . . . . . . . 9  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  RR  <->  ( F `  ( n  +  1 ) )  e.  RR ) )
3130rspcv 2652 . . . . . . . 8  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) ( F `  k )  e.  RR  ->  ( F `  ( n  +  1 ) )  e.  RR ) )
3226, 28, 31sylc 56 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  ( n  +  1 ) )  e.  RR )
33 fzssp1 8930 . . . . . . . . . 10  |-  ( M ... ( N  - 
1 ) )  C_  ( M ... ( ( N  -  1 )  +  1 ) )
3433, 24syl5sseq 2993 . . . . . . . . 9  |-  ( ph  ->  ( M ... ( N  -  1 ) )  C_  ( M ... N ) )
3534sselda 2945 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  n  e.  ( M ... N ) )
3611eleq1d 2106 . . . . . . . . 9  |-  ( k  =  n  ->  (
( F `  k
)  e.  RR  <->  ( F `  n )  e.  RR ) )
3736rspcv 2652 . . . . . . . 8  |-  ( n  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) ( F `  k )  e.  RR  ->  ( F `  n )  e.  RR ) )
3835, 28, 37sylc 56 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  n )  e.  RR )
3932, 38lenegd 7515 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( ( F `  ( n  +  1 ) )  <_  ( F `  n )  <->  -u ( F `
 n )  <_  -u ( F `  (
n  +  1 ) ) ) )
4015, 39mpbid 135 . . . . 5  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -u ( F `
 n )  <_  -u ( F `  (
n  +  1 ) ) )
4138renegcld 7378 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -u ( F `
 n )  e.  RR )
4211negeqd 7206 . . . . . . 7  |-  ( k  =  n  ->  -u ( F `  k )  =  -u ( F `  n ) )
4342, 4fvmptg 5248 . . . . . 6  |-  ( ( n  e.  ( M ... N )  /\  -u ( F `  n
)  e.  RR )  ->  ( ( k  e.  ( M ... N )  |->  -u ( F `  k )
) `  n )  =  -u ( F `  n ) )
4435, 41, 43syl2anc 391 . . . . 5  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( (
k  e.  ( M ... N )  |->  -u ( F `  k ) ) `  n )  =  -u ( F `  n ) )
4532renegcld 7378 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -u ( F `
 ( n  + 
1 ) )  e.  RR )
4629negeqd 7206 . . . . . . 7  |-  ( k  =  ( n  + 
1 )  ->  -u ( F `  k )  =  -u ( F `  ( n  +  1
) ) )
4746, 4fvmptg 5248 . . . . . 6  |-  ( ( ( n  +  1 )  e.  ( M ... N )  /\  -u ( F `  (
n  +  1 ) )  e.  RR )  ->  ( ( k  e.  ( M ... N )  |->  -u ( F `  k )
) `  ( n  +  1 ) )  =  -u ( F `  ( n  +  1
) ) )
4826, 45, 47syl2anc 391 . . . . 5  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( (
k  e.  ( M ... N )  |->  -u ( F `  k ) ) `  ( n  +  1 ) )  =  -u ( F `  ( n  +  1
) ) )
4940, 44, 483brtr4d 3794 . . . 4  |-  ( (
ph  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( (
k  e.  ( M ... N )  |->  -u ( F `  k ) ) `  n )  <_  ( ( k  e.  ( M ... N )  |->  -u ( F `  k )
) `  ( n  +  1 ) ) )
501, 6, 49monoord 9235 . . 3  |-  ( ph  ->  ( ( k  e.  ( M ... N
)  |->  -u ( F `  k ) ) `  M )  <_  (
( k  e.  ( M ... N ) 
|->  -u ( F `  k ) ) `  N ) )
51 eluzfz1 8895 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
521, 51syl 14 . . . 4  |-  ( ph  ->  M  e.  ( M ... N ) )
53 fveq2 5178 . . . . . . . 8  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
5453eleq1d 2106 . . . . . . 7  |-  ( k  =  M  ->  (
( F `  k
)  e.  RR  <->  ( F `  M )  e.  RR ) )
5554rspcv 2652 . . . . . 6  |-  ( M  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) ( F `  k )  e.  RR  ->  ( F `  M )  e.  RR ) )
5652, 27, 55sylc 56 . . . . 5  |-  ( ph  ->  ( F `  M
)  e.  RR )
5756renegcld 7378 . . . 4  |-  ( ph  -> 
-u ( F `  M )  e.  RR )
5853negeqd 7206 . . . . 5  |-  ( k  =  M  ->  -u ( F `  k )  =  -u ( F `  M ) )
5958, 4fvmptg 5248 . . . 4  |-  ( ( M  e.  ( M ... N )  /\  -u ( F `  M
)  e.  RR )  ->  ( ( k  e.  ( M ... N )  |->  -u ( F `  k )
) `  M )  =  -u ( F `  M ) )
6052, 57, 59syl2anc 391 . . 3  |-  ( ph  ->  ( ( k  e.  ( M ... N
)  |->  -u ( F `  k ) ) `  M )  =  -u ( F `  M ) )
61 eluzfz2 8896 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
621, 61syl 14 . . . 4  |-  ( ph  ->  N  e.  ( M ... N ) )
63 fveq2 5178 . . . . . . . 8  |-  ( k  =  N  ->  ( F `  k )  =  ( F `  N ) )
6463eleq1d 2106 . . . . . . 7  |-  ( k  =  N  ->  (
( F `  k
)  e.  RR  <->  ( F `  N )  e.  RR ) )
6564rspcv 2652 . . . . . 6  |-  ( N  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) ( F `  k )  e.  RR  ->  ( F `  N )  e.  RR ) )
6662, 27, 65sylc 56 . . . . 5  |-  ( ph  ->  ( F `  N
)  e.  RR )
6766renegcld 7378 . . . 4  |-  ( ph  -> 
-u ( F `  N )  e.  RR )
6863negeqd 7206 . . . . 5  |-  ( k  =  N  ->  -u ( F `  k )  =  -u ( F `  N ) )
6968, 4fvmptg 5248 . . . 4  |-  ( ( N  e.  ( M ... N )  /\  -u ( F `  N
)  e.  RR )  ->  ( ( k  e.  ( M ... N )  |->  -u ( F `  k )
) `  N )  =  -u ( F `  N ) )
7062, 67, 69syl2anc 391 . . 3  |-  ( ph  ->  ( ( k  e.  ( M ... N
)  |->  -u ( F `  k ) ) `  N )  =  -u ( F `  N ) )
7150, 60, 703brtr3d 3793 . 2  |-  ( ph  -> 
-u ( F `  M )  <_  -u ( F `  N )
)
7266, 56lenegd 7515 . 2  |-  ( ph  ->  ( ( F `  N )  <_  ( F `  M )  <->  -u ( F `  M
)  <_  -u ( F `
 N ) ) )
7371, 72mpbird 156 1  |-  ( ph  ->  ( F `  N
)  <_  ( F `  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   A.wral 2306   class class class wbr 3764    |-> cmpt 3818   ` cfv 4902  (class class class)co 5512   CCcc 6887   RRcr 6888   1c1 6890    + caddc 6892    <_ cle 7061    - cmin 7182   -ucneg 7183   ZZcz 8245   ZZ>=cuz 8473   ...cfz 8874
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474  df-fz 8875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator