ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addge01d Structured version   Unicode version

Theorem addge01d 7299
Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1  RR
ltnegd.2  RR
Assertion
Ref Expression
addge01d  0  <_  <_  +

Proof of Theorem addge01d
StepHypRef Expression
1 leidd.1 . 2  RR
2 ltnegd.2 . 2  RR
3 addge01 7242 . 2  RR  RR  0  <_  <_  +
41, 2, 3syl2anc 391 1  0  <_  <_  +
Colors of variables: wff set class
Syntax hints:   wi 4   wb 98   wcel 1390   class class class wbr 3755  (class class class)co 5455   RRcr 6690   0cc0 6691    + caddc 6694    <_ cle 6838
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935  ax-un 4136  ax-setind 4220  ax-cnex 6754  ax-resscn 6755  ax-1cn 6756  ax-1re 6757  ax-icn 6758  ax-addcl 6759  ax-addrcl 6760  ax-mulcl 6761  ax-addcom 6763  ax-addass 6765  ax-i2m1 6768  ax-0id 6771  ax-rnegex 6772  ax-pre-ltadd 6779
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-fal 1248  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ne 2203  df-nel 2204  df-ral 2305  df-rex 2306  df-rab 2309  df-v 2553  df-dif 2914  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-br 3756  df-opab 3810  df-xp 4294  df-cnv 4296  df-iota 4810  df-fv 4853  df-ov 5458  df-pnf 6839  df-mnf 6840  df-xr 6841  df-ltxr 6842  df-le 6843
This theorem is referenced by:  nn2ge  7707  bernneq  9002
  Copyright terms: Public domain W3C validator