Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseldd Unicode version

Theorem sseldd 2946
 Description: Membership inference from subclass relationship. (Contributed by NM, 14-Dec-2004.)
Hypotheses
Ref Expression
sseld.1
sseldd.2
Assertion
Ref Expression
sseldd

Proof of Theorem sseldd
StepHypRef Expression
1 sseldd.2 . 2
2 sseld.1 . . 3
32sseld 2944 . 2
41, 3mpd 13 1
 Colors of variables: wff set class Syntax hints:   wi 4   wcel 1393   wss 2917 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-in 2924  df-ss 2931 This theorem is referenced by:  frirrg  4087  ordtri2or2exmid  4296  riotass  5495  eroveu  6197  eroprf  6199  findcard2d  6348  findcard2sd  6349  nnppipi  6441  archnqq  6515  prarloclemlt  6591  fzssp1  8930  elfzoelz  9004  fzofzp1  9083  fzostep1  9093  isermono  9237
 Copyright terms: Public domain W3C validator