ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndconst Unicode version

Theorem 2ndconst 5843
Description: The mapping of a restriction of the  2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.)
Assertion
Ref Expression
2ndconst  |-  ( A  e.  V  ->  ( 2nd  |`  ( { A }  X.  B ) ) : ( { A }  X.  B ) -1-1-onto-> B )

Proof of Theorem 2ndconst
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snmg 3486 . . 3  |-  ( A  e.  V  ->  E. x  x  e.  { A } )
2 fo2ndresm 5789 . . 3  |-  ( E. x  x  e.  { A }  ->  ( 2nd  |`  ( { A }  X.  B ) ) : ( { A }  X.  B ) -onto-> B )
31, 2syl 14 . 2  |-  ( A  e.  V  ->  ( 2nd  |`  ( { A }  X.  B ) ) : ( { A }  X.  B ) -onto-> B )
4 moeq 2716 . . . . . 6  |-  E* x  x  =  <. A , 
y >.
54moani 1970 . . . . 5  |-  E* x
( y  e.  B  /\  x  =  <. A ,  y >. )
6 vex 2560 . . . . . . . 8  |-  y  e. 
_V
76brres 4618 . . . . . . 7  |-  ( x ( 2nd  |`  ( { A }  X.  B
) ) y  <->  ( x 2nd y  /\  x  e.  ( { A }  X.  B ) ) )
8 fo2nd 5785 . . . . . . . . . . 11  |-  2nd : _V -onto-> _V
9 fofn 5108 . . . . . . . . . . 11  |-  ( 2nd
: _V -onto-> _V  ->  2nd 
Fn  _V )
108, 9ax-mp 7 . . . . . . . . . 10  |-  2nd  Fn  _V
11 vex 2560 . . . . . . . . . 10  |-  x  e. 
_V
12 fnbrfvb 5214 . . . . . . . . . 10  |-  ( ( 2nd  Fn  _V  /\  x  e.  _V )  ->  ( ( 2nd `  x
)  =  y  <->  x 2nd y ) )
1310, 11, 12mp2an 402 . . . . . . . . 9  |-  ( ( 2nd `  x )  =  y  <->  x 2nd y )
1413anbi1i 431 . . . . . . . 8  |-  ( ( ( 2nd `  x
)  =  y  /\  x  e.  ( { A }  X.  B
) )  <->  ( x 2nd y  /\  x  e.  ( { A }  X.  B ) ) )
15 elxp7 5797 . . . . . . . . . . 11  |-  ( x  e.  ( { A }  X.  B )  <->  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x )  e.  { A }  /\  ( 2nd `  x )  e.  B ) ) )
16 eleq1 2100 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  x )  =  y  ->  (
( 2nd `  x
)  e.  B  <->  y  e.  B ) )
1716biimpa 280 . . . . . . . . . . . . . 14  |-  ( ( ( 2nd `  x
)  =  y  /\  ( 2nd `  x )  e.  B )  -> 
y  e.  B )
1817adantrl 447 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  x
)  =  y  /\  ( ( 1st `  x
)  e.  { A }  /\  ( 2nd `  x
)  e.  B ) )  ->  y  e.  B )
1918adantrl 447 . . . . . . . . . . . 12  |-  ( ( ( 2nd `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  { A }  /\  ( 2nd `  x
)  e.  B ) ) )  ->  y  e.  B )
20 elsni 3393 . . . . . . . . . . . . . 14  |-  ( ( 1st `  x )  e.  { A }  ->  ( 1st `  x
)  =  A )
21 eqopi 5798 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( _V 
X.  _V )  /\  (
( 1st `  x
)  =  A  /\  ( 2nd `  x )  =  y ) )  ->  x  =  <. A ,  y >. )
2221ancom2s 500 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( _V 
X.  _V )  /\  (
( 2nd `  x
)  =  y  /\  ( 1st `  x )  =  A ) )  ->  x  =  <. A ,  y >. )
2322an12s 499 . . . . . . . . . . . . . 14  |-  ( ( ( 2nd `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( 1st `  x )  =  A ) )  ->  x  =  <. A ,  y >. )
2420, 23sylanr2 385 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( 1st `  x )  e.  { A }
) )  ->  x  =  <. A ,  y
>. )
2524adantrrr 456 . . . . . . . . . . . 12  |-  ( ( ( 2nd `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  { A }  /\  ( 2nd `  x
)  e.  B ) ) )  ->  x  =  <. A ,  y
>. )
2619, 25jca 290 . . . . . . . . . . 11  |-  ( ( ( 2nd `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  { A }  /\  ( 2nd `  x
)  e.  B ) ) )  ->  (
y  e.  B  /\  x  =  <. A , 
y >. ) )
2715, 26sylan2b 271 . . . . . . . . . 10  |-  ( ( ( 2nd `  x
)  =  y  /\  x  e.  ( { A }  X.  B
) )  ->  (
y  e.  B  /\  x  =  <. A , 
y >. ) )
2827adantl 262 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( ( 2nd `  x
)  =  y  /\  x  e.  ( { A }  X.  B
) ) )  -> 
( y  e.  B  /\  x  =  <. A ,  y >. )
)
29 fveq2 5178 . . . . . . . . . . . 12  |-  ( x  =  <. A ,  y
>.  ->  ( 2nd `  x
)  =  ( 2nd `  <. A ,  y
>. ) )
30 op2ndg 5778 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  y  e.  _V )  ->  ( 2nd `  <. A ,  y >. )  =  y )
316, 30mpan2 401 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  ( 2nd `  <. A ,  y
>. )  =  y
)
3229, 31sylan9eqr 2094 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  x  =  <. A , 
y >. )  ->  ( 2nd `  x )  =  y )
3332adantrl 447 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( y  e.  B  /\  x  =  <. A ,  y >. )
)  ->  ( 2nd `  x )  =  y )
34 simprr 484 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( y  e.  B  /\  x  =  <. A ,  y >. )
)  ->  x  =  <. A ,  y >.
)
35 snidg 3400 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  A  e.  { A } )
3635adantr 261 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( y  e.  B  /\  x  =  <. A ,  y >. )
)  ->  A  e.  { A } )
37 simprl 483 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( y  e.  B  /\  x  =  <. A ,  y >. )
)  ->  y  e.  B )
38 opelxpi 4376 . . . . . . . . . . . 12  |-  ( ( A  e.  { A }  /\  y  e.  B
)  ->  <. A , 
y >.  e.  ( { A }  X.  B
) )
3936, 37, 38syl2anc 391 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( y  e.  B  /\  x  =  <. A ,  y >. )
)  ->  <. A , 
y >.  e.  ( { A }  X.  B
) )
4034, 39eqeltrd 2114 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( y  e.  B  /\  x  =  <. A ,  y >. )
)  ->  x  e.  ( { A }  X.  B ) )
4133, 40jca 290 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( y  e.  B  /\  x  =  <. A ,  y >. )
)  ->  ( ( 2nd `  x )  =  y  /\  x  e.  ( { A }  X.  B ) ) )
4228, 41impbida 528 . . . . . . . 8  |-  ( A  e.  V  ->  (
( ( 2nd `  x
)  =  y  /\  x  e.  ( { A }  X.  B
) )  <->  ( y  e.  B  /\  x  =  <. A ,  y
>. ) ) )
4314, 42syl5bbr 183 . . . . . . 7  |-  ( A  e.  V  ->  (
( x 2nd y  /\  x  e.  ( { A }  X.  B
) )  <->  ( y  e.  B  /\  x  =  <. A ,  y
>. ) ) )
447, 43syl5bb 181 . . . . . 6  |-  ( A  e.  V  ->  (
x ( 2nd  |`  ( { A }  X.  B
) ) y  <->  ( y  e.  B  /\  x  =  <. A ,  y
>. ) ) )
4544mobidv 1936 . . . . 5  |-  ( A  e.  V  ->  ( E* x  x ( 2nd  |`  ( { A }  X.  B ) ) y  <->  E* x ( y  e.  B  /\  x  =  <. A ,  y
>. ) ) )
465, 45mpbiri 157 . . . 4  |-  ( A  e.  V  ->  E* x  x ( 2nd  |`  ( { A }  X.  B
) ) y )
4746alrimiv 1754 . . 3  |-  ( A  e.  V  ->  A. y E* x  x ( 2nd  |`  ( { A }  X.  B ) ) y )
48 funcnv2 4959 . . 3  |-  ( Fun  `' ( 2nd  |`  ( { A }  X.  B
) )  <->  A. y E* x  x ( 2nd  |`  ( { A }  X.  B ) ) y )
4947, 48sylibr 137 . 2  |-  ( A  e.  V  ->  Fun  `' ( 2nd  |`  ( { A }  X.  B
) ) )
50 dff1o3 5132 . 2  |-  ( ( 2nd  |`  ( { A }  X.  B
) ) : ( { A }  X.  B ) -1-1-onto-> B  <->  ( ( 2nd  |`  ( { A }  X.  B ) ) : ( { A }  X.  B ) -onto-> B  /\  Fun  `' ( 2nd  |`  ( { A }  X.  B
) ) ) )
513, 49, 50sylanbrc 394 1  |-  ( A  e.  V  ->  ( 2nd  |`  ( { A }  X.  B ) ) : ( { A }  X.  B ) -1-1-onto-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98   A.wal 1241    = wceq 1243   E.wex 1381    e. wcel 1393   E*wmo 1901   _Vcvv 2557   {csn 3375   <.cop 3378   class class class wbr 3764    X. cxp 4343   `'ccnv 4344    |` cres 4347   Fun wfun 4896    Fn wfn 4897   -onto->wfo 4900   -1-1-onto->wf1o 4901   ` cfv 4902   1stc1st 5765   2ndc2nd 5766
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-1st 5767  df-2nd 5768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator