Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  snmg Unicode version

Theorem snmg 3486
 Description: The singleton of a set is inhabited. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
snmg
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem snmg
StepHypRef Expression
1 snidg 3400 . 2
2 elex2 2570 . 2
31, 2syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4  wex 1381   wcel 1393  csn 3375 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-sn 3381 This theorem is referenced by:  snm  3488  prmg  3489  xpimasn  4769  1stconst  5842  2ndconst  5843
 Copyright terms: Public domain W3C validator