![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylan9eqr | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) |
Ref | Expression |
---|---|
sylan9eqr.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sylan9eqr.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylan9eqr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9eqr.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sylan9eqr.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylan9eq 2089 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | ancoms 255 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-gen 1335 ax-4 1397 ax-17 1416 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-cleq 2030 |
This theorem is referenced by: sbcied2 2794 csbied2 2887 fun2ssres 4886 fcoi1 5013 fcoi2 5014 funssfv 5142 caovimo 5636 mpt2mptsx 5765 dmmpt2ssx 5767 fmpt2x 5768 2ndconst 5785 mpt2xopoveq 5796 tfrlemisucaccv 5880 rdgivallem 5908 nnmass 6005 nnm00 6038 ltexnqq 6391 ltrnqg 6403 nqnq0a 6437 nqnq0m 6438 nq0m0r 6439 nq0a0 6440 addnqprllem 6510 addnqprulem 6511 nnnn0addcl 7988 zindd 8132 qaddcl 8346 qmulcl 8348 qreccl 8351 frec2uzrdg 8876 expp1 8916 expnegap0 8917 expcllem 8920 mulexp 8948 expmul 8954 reim0b 9090 cjexp 9121 |
Copyright terms: Public domain | W3C validator |