![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0elon | GIF version |
Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
0elon | ⊢ ∅ ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord0 4128 | . 2 ⊢ Ord ∅ | |
2 | 0ex 3884 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | elon 4111 | . 2 ⊢ (∅ ∈ On ↔ Ord ∅) |
4 | 1, 3 | mpbir 134 | 1 ⊢ ∅ ∈ On |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1393 ∅c0 3224 Ord word 4099 Oncon0 4100 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-nul 3883 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-dif 2920 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-uni 3581 df-tr 3855 df-iord 4103 df-on 4105 |
This theorem is referenced by: inton 4130 onn0 4137 onm 4138 limon 4239 ordtriexmid 4247 ordtri2orexmid 4248 onsucsssucexmid 4252 onsucelsucexmid 4255 ordsoexmid 4286 ordpwsucexmid 4294 ordtri2or2exmid 4296 tfr0 5937 1on 6008 ordgt0ge1 6018 omv 6035 oa0 6037 om0 6038 oei0 6039 omcl 6041 omv2 6045 oaword1 6050 nna0r 6057 nnm0r 6058 card0 6368 |
Copyright terms: Public domain | W3C validator |