ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordpwsucexmid Structured version   GIF version

Theorem ordpwsucexmid 4228
Description: The subset in ordpwsucss 4225 cannot be equality. That is, strengthening it to equality implies excluded middle. (Contributed by Jim Kingdon, 30-Jul-2019.)
Hypothesis
Ref Expression
ordpwsucexmid.1 x On suc x = (𝒫 x ∩ On)
Assertion
Ref Expression
ordpwsucexmid (φ ¬ φ)
Distinct variable group:   φ,x

Proof of Theorem ordpwsucexmid
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 0elpw 3890 . . . . 5 𝒫 {z {∅} ∣ φ}
2 0elon 4076 . . . . 5 On
3 elin 3102 . . . . 5 (∅ (𝒫 {z {∅} ∣ φ} ∩ On) ↔ (∅ 𝒫 {z {∅} ∣ φ} On))
41, 2, 3mpbir2an 837 . . . 4 (𝒫 {z {∅} ∣ φ} ∩ On)
5 ordtriexmidlem 4190 . . . . 5 {z {∅} ∣ φ} On
6 suceq 4086 . . . . . . 7 (x = {z {∅} ∣ φ} → suc x = suc {z {∅} ∣ φ})
7 pweq 3336 . . . . . . . 8 (x = {z {∅} ∣ φ} → 𝒫 x = 𝒫 {z {∅} ∣ φ})
87ineq1d 3113 . . . . . . 7 (x = {z {∅} ∣ φ} → (𝒫 x ∩ On) = (𝒫 {z {∅} ∣ φ} ∩ On))
96, 8eqeq12d 2037 . . . . . 6 (x = {z {∅} ∣ φ} → (suc x = (𝒫 x ∩ On) ↔ suc {z {∅} ∣ φ} = (𝒫 {z {∅} ∣ φ} ∩ On)))
10 ordpwsucexmid.1 . . . . . 6 x On suc x = (𝒫 x ∩ On)
119, 10vtoclri 2604 . . . . 5 ({z {∅} ∣ φ} On → suc {z {∅} ∣ φ} = (𝒫 {z {∅} ∣ φ} ∩ On))
125, 11ax-mp 7 . . . 4 suc {z {∅} ∣ φ} = (𝒫 {z {∅} ∣ φ} ∩ On)
134, 12eleqtrri 2096 . . 3 suc {z {∅} ∣ φ}
14 elsuci 4087 . . 3 (∅ suc {z {∅} ∣ φ} → (∅ {z {∅} ∣ φ} ∅ = {z {∅} ∣ φ}))
1513, 14ax-mp 7 . 2 (∅ {z {∅} ∣ φ} ∅ = {z {∅} ∣ φ})
16 0ex 3857 . . . . . 6 V
1716snid 3376 . . . . 5 {∅}
18 biidd 161 . . . . . 6 (z = ∅ → (φφ))
1918elrab3 2675 . . . . 5 (∅ {∅} → (∅ {z {∅} ∣ φ} ↔ φ))
2017, 19ax-mp 7 . . . 4 (∅ {z {∅} ∣ φ} ↔ φ)
2120biimpi 113 . . 3 (∅ {z {∅} ∣ φ} → φ)
22 ordtriexmidlem2 4191 . . . 4 ({z {∅} ∣ φ} = ∅ → ¬ φ)
2322eqcoms 2026 . . 3 (∅ = {z {∅} ∣ φ} → ¬ φ)
2421, 23orim12i 663 . 2 ((∅ {z {∅} ∣ φ} ∅ = {z {∅} ∣ φ}) → (φ ¬ φ))
2515, 24ax-mp 7 1 (φ ¬ φ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 98   wo 616   = wceq 1228   wcel 1375  wral 2283  {crab 2287  cin 2892  c0 3200  𝒫 cpw 3333  {csn 3349  Oncon0 4047  suc csuc 4049
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 532  ax-in2 533  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1364  ax-ie2 1365  ax-8 1377  ax-10 1378  ax-11 1379  ax-i12 1380  ax-bnd 1381  ax-4 1382  ax-14 1387  ax-17 1401  ax-i9 1405  ax-ial 1410  ax-i5r 1411  ax-ext 2005  ax-sep 3848  ax-nul 3856  ax-pow 3900
This theorem depends on definitions:  df-bi 110  df-3an 875  df-tru 1231  df-nf 1330  df-sb 1629  df-clab 2010  df-cleq 2016  df-clel 2019  df-nfc 2150  df-ral 2288  df-rex 2289  df-rab 2292  df-v 2536  df-dif 2896  df-un 2898  df-in 2900  df-ss 2907  df-nul 3201  df-pw 3335  df-sn 3355  df-uni 3554  df-tr 3828  df-iord 4050  df-on 4052  df-suc 4055
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator