Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtri2orexmid Structured version   GIF version

Theorem ordtri2orexmid 4193
 Description: Ordinal trichotomy implies excluded middle. (Contributed by Jim Kingdon, 31-Jul-2019.)
Hypothesis
Ref Expression
ordtri2orexmid.1 x On y On (x y yx)
Assertion
Ref Expression
ordtri2orexmid (φ ¬ φ)
Distinct variable group:   φ,x,y

Proof of Theorem ordtri2orexmid
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 ordtri2orexmid.1 . . . 4 x On y On (x y yx)
2 ordtriexmidlem 4190 . . . . 5 {z {∅} ∣ φ} On
3 suc0 4095 . . . . . 6 suc ∅ = {∅}
4 0elon 4076 . . . . . . 7 On
54onsuci 4189 . . . . . 6 suc ∅ On
63, 5eqeltrri 2093 . . . . 5 {∅} On
7 eleq1 2082 . . . . . . 7 (x = {z {∅} ∣ φ} → (x y ↔ {z {∅} ∣ φ} y))
8 sseq2 2942 . . . . . . 7 (x = {z {∅} ∣ φ} → (yxy ⊆ {z {∅} ∣ φ}))
97, 8orbi12d 694 . . . . . 6 (x = {z {∅} ∣ φ} → ((x y yx) ↔ ({z {∅} ∣ φ} y y ⊆ {z {∅} ∣ φ})))
10 eleq2 2083 . . . . . . 7 (y = {∅} → ({z {∅} ∣ φ} y ↔ {z {∅} ∣ φ} {∅}))
11 sseq1 2941 . . . . . . 7 (y = {∅} → (y ⊆ {z {∅} ∣ φ} ↔ {∅} ⊆ {z {∅} ∣ φ}))
1210, 11orbi12d 694 . . . . . 6 (y = {∅} → (({z {∅} ∣ φ} y y ⊆ {z {∅} ∣ φ}) ↔ ({z {∅} ∣ φ} {∅} {∅} ⊆ {z {∅} ∣ φ})))
139, 12rspc2va 2638 . . . . 5 ((({z {∅} ∣ φ} On {∅} On) x On y On (x y yx)) → ({z {∅} ∣ φ} {∅} {∅} ⊆ {z {∅} ∣ φ}))
142, 6, 13mpanl12 414 . . . 4 (x On y On (x y yx) → ({z {∅} ∣ φ} {∅} {∅} ⊆ {z {∅} ∣ φ}))
151, 14ax-mp 7 . . 3 ({z {∅} ∣ φ} {∅} {∅} ⊆ {z {∅} ∣ φ})
16 elsni 3372 . . . . 5 ({z {∅} ∣ φ} {∅} → {z {∅} ∣ φ} = ∅)
17 ordtriexmidlem2 4191 . . . . 5 ({z {∅} ∣ φ} = ∅ → ¬ φ)
1816, 17syl 14 . . . 4 ({z {∅} ∣ φ} {∅} → ¬ φ)
19 snssg 3472 . . . . . 6 (∅ On → (∅ {z {∅} ∣ φ} ↔ {∅} ⊆ {z {∅} ∣ φ}))
204, 19ax-mp 7 . . . . 5 (∅ {z {∅} ∣ φ} ↔ {∅} ⊆ {z {∅} ∣ φ})
21 0ex 3856 . . . . . . . 8 V
2221snid 3375 . . . . . . 7 {∅}
23 biidd 161 . . . . . . . 8 (z = ∅ → (φφ))
2423elrab3 2674 . . . . . . 7 (∅ {∅} → (∅ {z {∅} ∣ φ} ↔ φ))
2522, 24ax-mp 7 . . . . . 6 (∅ {z {∅} ∣ φ} ↔ φ)
2625biimpi 113 . . . . 5 (∅ {z {∅} ∣ φ} → φ)
2720, 26sylbir 125 . . . 4 ({∅} ⊆ {z {∅} ∣ φ} → φ)
2818, 27orim12i 663 . . 3 (({z {∅} ∣ φ} {∅} {∅} ⊆ {z {∅} ∣ φ}) → (¬ φ φ))
2915, 28ax-mp 7 . 2 φ φ)
30 orcom 634 . 2 ((¬ φ φ) ↔ (φ ¬ φ))
3129, 30mpbi 133 1 (φ ¬ φ)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   ↔ wb 98   ∨ wo 616   = wceq 1228   ∈ wcel 1374  ∀wral 2282  {crab 2286   ⊆ wss 2892  ∅c0 3199  {csn 3348  Oncon0 4047  suc csuc 4049 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 532  ax-in2 533  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-13 1385  ax-14 1386  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004  ax-sep 3847  ax-nul 3855  ax-pow 3899  ax-pr 3916  ax-un 4118 This theorem depends on definitions:  df-bi 110  df-3an 875  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-ral 2287  df-rex 2288  df-rab 2291  df-v 2535  df-dif 2895  df-un 2897  df-in 2899  df-ss 2906  df-nul 3200  df-pw 3334  df-sn 3354  df-pr 3355  df-uni 3553  df-tr 3827  df-iord 4050  df-on 4052  df-suc 4055 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator