Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onn0 | GIF version |
Description: The class of all ordinal numbers is not empty. (Contributed by NM, 17-Sep-1995.) |
Ref | Expression |
---|---|
onn0 | ⊢ On ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 4129 | . 2 ⊢ ∅ ∈ On | |
2 | ne0i 3230 | . 2 ⊢ (∅ ∈ On → On ≠ ∅) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ On ≠ ∅ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1393 ≠ wne 2204 ∅c0 3224 Oncon0 4100 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-nul 3883 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-v 2559 df-dif 2920 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-uni 3581 df-tr 3855 df-iord 4103 df-on 4105 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |